aboutsummaryrefslogtreecommitdiffstats
path: root/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.reasoner/src/hu/bme/mit/inf/dslreasoner/viatrasolver/reasoner/dse/NumericSolver.xtend
blob: bb2c7dbffe8708c156b565a49f72df32dfe3646d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
package hu.bme.mit.inf.dslreasoner.viatrasolver.reasoner.dse

import hu.bme.mit.inf.dslreasoner.viatra2logic.NumericDrealProblemSolver
import hu.bme.mit.inf.dslreasoner.viatra2logic.NumericDynamicProblemSolver
import hu.bme.mit.inf.dslreasoner.viatra2logic.NumericTranslator
import hu.bme.mit.inf.dslreasoner.viatra2logic.NumericZ3ProblemSolver
import hu.bme.mit.inf.dslreasoner.viatrasolver.partialinterpretationlanguage.partialinterpretation.BinaryElementRelationLink
import hu.bme.mit.inf.dslreasoner.viatrasolver.partialinterpretationlanguage.partialinterpretation.BooleanElement
import hu.bme.mit.inf.dslreasoner.viatrasolver.partialinterpretationlanguage.partialinterpretation.IntegerElement
import hu.bme.mit.inf.dslreasoner.viatrasolver.partialinterpretationlanguage.partialinterpretation.PartialInterpretation
import hu.bme.mit.inf.dslreasoner.viatrasolver.partialinterpretationlanguage.partialinterpretation.PartialRelationInterpretation
import hu.bme.mit.inf.dslreasoner.viatrasolver.partialinterpretationlanguage.partialinterpretation.PrimitiveElement
import hu.bme.mit.inf.dslreasoner.viatrasolver.partialinterpretationlanguage.partialinterpretation.RealElement
import hu.bme.mit.inf.dslreasoner.viatrasolver.partialinterpretationlanguage.partialinterpretation.RelationLink
import hu.bme.mit.inf.dslreasoner.viatrasolver.partialinterpretationlanguage.partialinterpretation.StringElement
import hu.bme.mit.inf.dslreasoner.viatrasolver.reasoner.ExplorationStrategy
import hu.bme.mit.inf.dslreasoner.viatrasolver.reasoner.ModelGenerationMethod
import hu.bme.mit.inf.dslreasoner.viatrasolver.reasoner.NumericSolverSelection
import hu.bme.mit.inf.dslreasoner.viatrasolver.reasoner.ViatraReasonerConfiguration
import java.util.HashMap
import java.util.LinkedHashMap
import java.util.LinkedHashSet
import java.util.List
import java.util.Map
import org.eclipse.emf.ecore.EObject
import org.eclipse.viatra.dse.base.ThreadContext
import org.eclipse.viatra.query.runtime.api.IPatternMatch
import org.eclipse.viatra.query.runtime.api.ViatraQueryMatcher
import org.eclipse.viatra.query.runtime.matchers.psystem.PConstraint
import org.eclipse.viatra.query.runtime.matchers.psystem.basicdeferred.ExpressionEvaluation

class NumericSolver {
	val ModelGenerationMethod method
	var ThreadContext threadContext
	val constraint2MustUnitPropagationPrecondition = new HashMap<PConstraint,ViatraQueryMatcher<? extends IPatternMatch>>
	val constraint2CurrentUnitPropagationPrecondition = new HashMap<PConstraint,ViatraQueryMatcher<? extends IPatternMatch>>
	NumericTranslator t
	
	val boolean intermediateConsistencyCheck
	val boolean caching;
	Map<LinkedHashMap<PConstraint, Iterable<List<Integer>>>,Boolean> satisfiabilityCache = new HashMap
	val String drealLocalPath;
	val ExplorationStrategy strategy;
	
	var long runtime = 0
	var long cachingTime = 0 
	var int numberOfSolverCalls = 0
	var int numberOfCachedSolverCalls = 0
	
	new(ModelGenerationMethod method, ViatraReasonerConfiguration config, boolean caching) {
		this.method = method
		this.intermediateConsistencyCheck = config.runIntermediateNumericalConsistencyChecks
		this.caching = caching
		this.drealLocalPath = config.drealLocalPath
		this.strategy = config.strategy
		this.t = new NumericTranslator(createNumericTranslator(config))
	}
	
	def createNumericTranslator(ViatraReasonerConfiguration config) {
		val solverSelection = config.numericSolverSelection
		val strategy = config.strategy
		if (strategy == ExplorationStrategy.None) {
			//initialise the specified
			if (solverSelection == NumericSolverSelection.DREAL_DOCKER) 
				return new NumericDrealProblemSolver(true, null)
			if (solverSelection == NumericSolverSelection.DREAL_LOCAL)
				return new NumericDrealProblemSolver(false, drealLocalPath)
			if (solverSelection == NumericSolverSelection.Z3) {
				//TODO THIS IS HARD-CODED for now
//			val root = "/data/viatra/VIATRA-Generator";
			val root = "/home/models/VIATRA-Generator";
				//END HARD-CODED
	//			String root = (new File(System.getProperty("user.dir"))).getParentFile().getParent();
		        System.load(root + "/Solvers/SMT-Solver/com.microsoft.z3/lib/libz3.so");
		        System.load(root + "/Solvers/SMT-Solver/com.microsoft.z3/lib/libz3java.so");
	//	        System.load("libz3.so");
	//	        System.load("libz3java.so");
				return new NumericZ3ProblemSolver
			}
		}
		else {
			//initialise both dreal-local and z3
			
			//TODO THIS IS HARD-CODED for now
//			val root = "/data/viatra/VIATRA-Generator";
			val root = "/home/models/VIATRA-Generator";
			//END HARD-CODED
//			String root = (new File(System.getProperty("user.dir"))).getParentFile().getParent();
	        System.load(root + "/Solvers/SMT-Solver/com.microsoft.z3/lib/libz3.so");
	        System.load(root + "/Solvers/SMT-Solver/com.microsoft.z3/lib/libz3java.so");
			return new NumericDynamicProblemSolver(drealLocalPath)
		}
	}
	
	def init(ThreadContext context) {
		// This makes the NumericSolver single-threaded,
		// but that's not a problem, because we only use the solver on a single thread anyways.
		this.threadContext = context
		val engine = threadContext.queryEngine
		for(entry : method.mustUnitPropagationPreconditions.entrySet) {
			val constraint = entry.key
			val querySpec = entry.value
			val matcher = querySpec.getMatcher(engine);
			constraint2MustUnitPropagationPrecondition.put(constraint,matcher)
		}
		for(entry : method.currentUnitPropagationPreconditions.entrySet) {
			val constraint = entry.key
			val querySpec = entry.value
			val matcher = querySpec.getMatcher(engine);
			constraint2CurrentUnitPropagationPrecondition.put(constraint,matcher)
		}
	}
	
	def getRuntime(){runtime}
	def getCachingTime(){cachingTime}
	def getNumberOfSolverCalls(){numberOfSolverCalls}
	def getNumberOfCachedSolverCalls(){numberOfCachedSolverCalls}
	def getSolverFormingProblem(){this.t.formingProblemTime}
	def getSolverSolvingProblem(){this.t.solvingProblemTime}
	def getSolverSolution(){this.t.formingSolutionTime}
	def getNumericSolverSelection(){this.t.numericSolver}
	
	def boolean maySatisfiable() {
		val int phase = determinePhase()
		
		if(intermediateConsistencyCheck) {
			return isSatisfiable(this.constraint2MustUnitPropagationPrecondition, phase)
		} else {
			return true
		}
	}
	def boolean currentSatisfiable() {
		val int phase = determinePhase()
		//TODO generalize this
		isSatisfiable(this.constraint2CurrentUnitPropagationPrecondition, phase)
	}
	
	private def boolean isSatisfiable(Map<PConstraint,ViatraQueryMatcher<? extends IPatternMatch>> matches, int phase) {
		val start = System.nanoTime
		var boolean finalResult 
		val boolean needsFilling = needsFilling
		val model = threadContext.getModel as PartialInterpretation
		val dataObjects = model.newElements.filter(PrimitiveElement).filter[!model.openWorldElements.contains(it)].toList
	
		if(matches.empty){
			finalResult=true
		} else {
			val propagatedConstraints = new HashMap
			//Filter constraints if there are phase-related restricutions
			//null whitelist means accept everything
			
			println("<<<<START-STEP>>>> (" + phase + ")")
			if (phase == -2) {
				println("Skipping numeric check")
				//TODO Big assumption
				return true
			}
			val whitelist = getConstraintWhitelist(phase)
			for(entry : matches.entrySet) {
				if (entry.value !== null){
					val name = (entry.key as ExpressionEvaluation).body.pattern.simpleName
					if (whitelist === null || whitelist.contains(name)) {
//						println(name)
						val constraint = entry.key
//						println("--match?-- " + constraint)
						val allMatches = entry.value.allMatches.map[it.toArray]
		//				println("---------- " + entry.value.allMatches)
						propagatedConstraints.put(constraint,allMatches)
					}
				}
			}
			//check numeric problem
			if(propagatedConstraints.values.forall[empty]) {
				finalResult=true
			} else {
				if(caching) {
					val code = getCode(propagatedConstraints)
					val cachedResult = satisfiabilityCache.get(code)
					if(cachedResult === null) {
	//					println('''new problem, call solver''')
	//					for(entry : code.entrySet) {
	//						println('''«entry.key» -> «entry.value»''')
	//					}
						//println(code.hashCode)
						this.numberOfSolverCalls++
						var boolean res = false
						if (needsFilling){
							//TODO ASSUME Always True
							//GET LIST OF VARS TO FILL
							val fillMap = t.delegateGetSolution(dataObjects, propagatedConstraints, selectSolver(phase))
							if (fillMap === null) res = false
							else {
								fillWithPartialSolutionsDirectly(dataObjects, fillMap)
								res = true
							}
						} else {
							res = t.delegateIsSatisfiable(propagatedConstraints, selectSolver(phase))
						}
						//TODO FIX CACHING
						satisfiabilityCache.put(code,res)
						finalResult=res
					} else {
						//println('''similar problem, answer from cache''')
						println('''potential issue, answer from cache''')
						finalResult=cachedResult
						this.numberOfCachedSolverCalls++
					}
				} else {
					if (needsFilling){
						//TODO ASSUME Always True
						//GET LIST OF VARS TO FILL
						val fillMap = t.delegateGetSolution(dataObjects, propagatedConstraints, selectSolver(phase))
						if (fillMap === null) finalResult = false
						else {
							fillWithPartialSolutionsDirectly(dataObjects, fillMap)
							finalResult = true
						}
					} else {
						finalResult = t.delegateIsSatisfiable(propagatedConstraints, selectSolver(phase))
					}
					this.numberOfSolverCalls++
				}
			}
		}	
		this.runtime+=System.nanoTime-start
		if (phase == 2) finalResult = isSatisfiable(matches, 3)
		return finalResult
	}
	
	def selectSolver(int phase) {
		if (strategy === ExplorationStrategy.CrossingScenario){
			if (phase == 1) return "dreal"
			else return "dreal"
		}
		return "irrelevant"
	}
	
	def int determinePhase() {
		// >= 0 : an actual phase
		// -1 : take all numeric constraints
		// -2 : SKIP (take no numeric constraints)
		if (strategy == ExplorationStrategy.CrossingScenario) {
			//assumikng standard input, w/ visinBlocked and CollisionExists between pre-included actors
			val PartialInterpretation head = threadContext.getModel() as PartialInterpretation;
			val List<PartialRelationInterpretation> relations = head.getPartialrelationinterpretation();
			var boolean foundBlockedBy = false;
			
			var int numActors;
			var int numPlacedOn;
			var int numPlacements = 0;
			
			for (PartialRelationInterpretation rel : relations) {
				if(rel.getInterpretationOf().getName().equals("actors reference CrossingScenario")) {
					numActors = rel.relationlinks.size
				}
				
				if(rel.getInterpretationOf().getName().equals("placedOn reference Actor")) {
					numPlacedOn = rel.relationlinks.size
				}
				
				if(rel.getInterpretationOf().getName().equals("xPos attribute Actor")) {
					for (RelationLink link : rel.getRelationlinks()) {
						val PrimitiveElement param2 = (link as BinaryElementRelationLink).getParam2() as PrimitiveElement;
						if (param2.isValueSet()) {
							numPlacements++
						}
					}
				}
				
				if(rel.getInterpretationOf().getName().equals("blockedBy reference VisionBlocked")) {
					if (!rel.getRelationlinks().isEmpty()) {
						foundBlockedBy = true
					}
				}
			}
			val boolean unplacedActorExists = numPlacements < numActors
			//it means that there is no blockedBy
			//so we are at most at phase 2
			if (numPlacedOn == 1 && numPlacements == 0) return 1
			if (foundBlockedBy && unplacedActorExists) return 2
			if (numPlacements == numActors) return 3;
			return -2;			
		}
		return -1;
	}
	
	def getConstraintWhitelist(int phase) {
		val List<String> wl = newArrayList
		//null return means accept everything
		if (strategy === ExplorationStrategy.None){
			return null
		} else if (strategy === ExplorationStrategy.CrossingScenario){
			/*
						"define_placedOn_actorOnVerticalLane",
						"define_placedOn_actorOnHorizLane",
						
						"define_actor_maxXp",
						"define_actor_minXp",
						"define_actor_maxYp",
						"define_actor_minYp",
						
						"define_actor_wrtLane",
							
						"define_actor_minimumDistance",
						
						"define_actor_actorOnVertLaneHasxSpeed0",
						"define_actor_actorOnVertLaneMinYs",
						"define_actor_actorOnVertLaneMaxYs",
						"define_actor_actorOnHorizLaneHasySpeed0",
						"define_actor_actorOnHorizLaneMinXs",
						"define_actor_actorOnHorizLaneMaxXs",
						
						"define_actor_pedestrianWidth",
						"define_actor_pedestrianLength",
						"define_actor_vehicleWidth",
						"define_actor_vehicleWidth",
						"define_actor_vehicleLength",
						"define_actor_vehicleLength",
						
						"collisionExists_timeWithinBound",
						"collisionExists_timeNotNegative",
						"collisionExists_defineCollision_y1",
						"collisionExists_defineCollision_y2",
						"collisionExists_defineCollision_x1",
						"collisionExists_defineCollision_x2",
						
						"visionBlocked_ites_notOnSameVertLine",
						"visionBlocked_ites_top",
						"visionBlocked_ites_bottom",
						"visionBlocked_xdistBSlargerThanxdistTS",
						"visionBlocked_xdistBTlargerThanxdistST",
						"visionBlocked_ydistBSlargerThanydistTS",
						"visionBlocked_ydistBTlargerThanydistST"
			 */
			
			//HINTS:
			//define_actor_wrtLane
			//28.5 is structural hint
			switch (phase) {
				case 1: {					
					wl.addAll(#[
						"define_placedOn_actorOnVerticalLane",
						"define_placedOn_actorOnHorizLane",
						
						"define_actor_maxXp",
						"define_actor_minXp",
						"define_actor_maxYp",
						"define_actor_minYp",
						
						"define_actor_pedestrianWidth",
						"define_actor_pedestrianLength",
						"define_actor_vehicleWidth",
						"define_actor_vehicleWidth",
						"define_actor_vehicleLength",
						"define_actor_vehicleLength"

					])
				}
				case 2: {
					wl.addAll(#[
						
						"define_placedOn_actorOnVerticalLane",
						"define_placedOn_actorOnHorizLane",
						
						"define_actor_maxXp",
						"define_actor_minXp",
						"define_actor_maxYp",
						"define_actor_minYp",
							
						"define_actor_minimumDistance",
						
						"define_actor_pedestrianWidth",
						"define_actor_pedestrianLength",
						"define_actor_vehicleWidth",
						"define_actor_vehicleWidth",
						"define_actor_vehicleLength",
						"define_actor_vehicleLength",
						
						"visionBlocked_ites_notOnSameVertLine",
						"visionBlocked_ites_top",
						"visionBlocked_ites_bottom",
						"visionBlocked_xdistBSlargerThanxdistTS",
						"visionBlocked_xdistBTlargerThanxdistST",
						"visionBlocked_ydistBSlargerThanydistTS",
						"visionBlocked_ydistBTlargerThanydistST"
					])				
				}
				case 3: {
					wl.addAll(#[
						
						"define_placedOn_actorOnVerticalLane",
						"define_placedOn_actorOnHorizLane",
						
						"define_actor_maxXp",
						"define_actor_minXp",
						"define_actor_maxYp",
						"define_actor_minYp",
							
						"define_actor_minimumDistance",
						
						"define_actor_actorOnVertLaneHasxSpeed0",
						"define_actor_actorOnVertLaneMinYs",
						"define_actor_actorOnVertLaneMaxYs",
						"define_actor_actorOnHorizLaneHasySpeed0",
						"define_actor_actorOnHorizLaneMinXs",
						"define_actor_actorOnHorizLaneMaxXs",
						
						"define_actor_pedestrianWidth",
						"define_actor_pedestrianLength",
						"define_actor_vehicleWidth",
						"define_actor_vehicleWidth",
						"define_actor_vehicleLength",
						"define_actor_vehicleLength",
						
						"collisionExists_timeWithinBound",
						"collisionExists_timeNotNegative",
						"collisionExists_defineCollision_y1",
						"collisionExists_defineCollision_y2",
						"collisionExists_defineCollision_x1",
						"collisionExists_defineCollision_x2"
					])
				}
				default: {
					//this is for 3 if we implement 4
//					bl.addAll(#[0, 1, 2, 3, 4, 5, 6, 7])
					
					//this is for 4 if we do it
					wl.addAll(#[])
					return null
				}
			}
		}		
		return wl
	}
	
	def getNeedsFilling(){
		if (strategy == ExplorationStrategy.CrossingScenario) return true
		return false
	}
	
	def getCode(HashMap<PConstraint, Iterable<Object[]>> propagatedConstraints) {
		val start = System.nanoTime
		val involvedObjects = new LinkedHashSet(propagatedConstraints.values.flatten.map[toList].flatten.toList).toList
		val res = new LinkedHashMap(propagatedConstraints.mapValues[matches | matches.map[objects | objects.map[object | involvedObjects.indexOf(object)].toList]])
		this.cachingTime += System.nanoTime-start
		return res
	}
	
	def fillSolutionCopy(Map<EObject, EObject> trace) {
		//No need to do a final check to fill if we are using a strategy
		if (strategy === ExplorationStrategy.CrossingScenario) return
		val model = threadContext.getModel as PartialInterpretation
		val dataObjects = model.newElements.filter(PrimitiveElement).filter[!model.openWorldElements.contains(it)].toList
		if(constraint2CurrentUnitPropagationPrecondition.empty) {
			fillWithDefaultValues(dataObjects,trace)
		} else {
			val propagatedConstraints = new HashMap
			for(entry : constraint2CurrentUnitPropagationPrecondition.entrySet) {
				val constraint = entry.key
				val allMatches = entry.value.allMatches.map[it.toArray]
				propagatedConstraints.put(constraint,allMatches)
			}
			
			if(propagatedConstraints.values.forall[empty]) {
				fillWithDefaultValues(dataObjects,trace)
			} else {
				val solution = t.delegateGetSolution(dataObjects,propagatedConstraints, "dreal")
				fillWithSolutions(dataObjects,solution,trace)
			}
		}
	}
	
	def protected fillWithDefaultValues(List<PrimitiveElement> elements, Map<EObject, EObject> trace) {
		for(element : elements) {
			if(element.valueSet==false) {
				val value = getDefaultValue(element)
				val target = trace.get(element) as PrimitiveElement
				target.fillWithValue(value)
			}
		}
	}
	
	def protected dispatch getDefaultValue(BooleanElement e) {false}
	def protected dispatch getDefaultValue(IntegerElement e) {0}
	def protected dispatch getDefaultValue(RealElement e) {0.0}
	def protected dispatch getDefaultValue(StringElement e) {""}
	
	def protected fillWithSolutions(List<PrimitiveElement> elements, Map<PrimitiveElement, Number> solution, Map<EObject, EObject> trace) {
		for(element : elements) {
			if(element.valueSet==false) {
				if(solution.containsKey(element)) {
					val value = solution.get(element)
					val target = trace.get(element) as PrimitiveElement
					target.fillWithValue(value)
				} else {
					val target = trace.get(element) as PrimitiveElement
					target.fillWithValue(target.defaultValue)
				}
			}
		}
	}
	
	def protected dispatch fillWithValue(BooleanElement e, Object value) {e.valueSet=true e.value=value as Boolean}
	def protected dispatch fillWithValue(IntegerElement e, Object value) {e.valueSet=true e.value=value as Integer}
	def protected dispatch fillWithValue(RealElement e, Object value) {e.valueSet=true e.value=value as Double }
	def protected dispatch fillWithValue(StringElement e, Object value) {e.valueSet=true e.value=value as String}
	
	def protected fillWithPartialSolutionsDirectly(List<PrimitiveElement> elements, Map<PrimitiveElement, Number> solution) {
		for(element : elements) {
			//we allow overwriting of already set variables
			if(solution.containsKey(element)) {
				val value = solution.get(element)
				if (value !== null){
					element.fillWithValue(value)
				}
			}
		}
	}
}