aboutsummaryrefslogtreecommitdiffstats
path: root/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval
diff options
context:
space:
mode:
Diffstat (limited to 'Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval')
-rw-r--r--Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/Interval.xtend584
-rw-r--r--Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalAggregationMode.java99
-rw-r--r--Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalAggregationOperator.xtend48
-rw-r--r--Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalHullAggregatorOperator.xtend87
-rw-r--r--Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalRedBlackNode.xtend177
-rw-r--r--Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/RedBlackNode.java1392
-rw-r--r--Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/Reference.java51
-rw-r--r--Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/aggregators/IntervalAggregatorFactory.xtend50
-rw-r--r--Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/aggregators/intervalHull.xtend74
9 files changed, 2562 insertions, 0 deletions
diff --git a/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/Interval.xtend b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/Interval.xtend
new file mode 100644
index 00000000..691c8783
--- /dev/null
+++ b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/Interval.xtend
@@ -0,0 +1,584 @@
1package hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval
2
3import java.math.BigDecimal
4import java.math.MathContext
5import java.math.RoundingMode
6import org.eclipse.xtend.lib.annotations.Data
7
8abstract class Interval implements Comparable<Interval> {
9 static val PRECISION = 32
10 package static val ROUND_DOWN = new MathContext(PRECISION, RoundingMode.FLOOR)
11 package static val ROUND_UP = new MathContext(PRECISION, RoundingMode.CEILING)
12
13 private new() {
14 }
15
16 abstract def boolean mustEqual(Interval other)
17
18 abstract def boolean mayEqual(Interval other)
19
20 def mustNotEqual(Interval other) {
21 !mayEqual(other)
22 }
23
24 def mayNotEqual(Interval other) {
25 !mustEqual(other)
26 }
27
28 abstract def boolean mustBeLessThan(Interval other)
29
30 abstract def boolean mayBeLessThan(Interval other)
31
32 def mustBeLessThanOrEqual(Interval other) {
33 !mayBeGreaterThan(other)
34 }
35
36 def mayBeLessThanOrEqual(Interval other) {
37 !mustBeGreaterThan(other)
38 }
39
40 def mustBeGreaterThan(Interval other) {
41 other.mustBeLessThan(this)
42 }
43
44 def mayBeGreaterThan(Interval other) {
45 other.mayBeLessThan(this)
46 }
47
48 def mustBeGreaterThanOrEqual(Interval other) {
49 other.mustBeLessThanOrEqual(this)
50 }
51
52 def mayBeGreaterThanOrEqual(Interval other) {
53 other.mayBeLessThanOrEqual(this)
54 }
55
56 abstract def Interval min(Interval other)
57
58 abstract def Interval max(Interval other)
59
60 abstract def Interval join(Interval other)
61
62 def +() {
63 this
64 }
65
66 abstract def Interval -()
67
68 abstract def Interval +(Interval other)
69
70 abstract def Interval -(Interval other)
71
72 abstract def Interval *(int count)
73
74 abstract def Interval *(Interval other)
75
76 abstract def Interval /(Interval other)
77
78 abstract def Interval **(Interval other)
79
80 public static val EMPTY = new Interval {
81 override mustEqual(Interval other) {
82 true
83 }
84
85 override mayEqual(Interval other) {
86 false
87 }
88
89 override mustBeLessThan(Interval other) {
90 true
91 }
92
93 override mayBeLessThan(Interval other) {
94 false
95 }
96
97 override min(Interval other) {
98 EMPTY
99 }
100
101 override max(Interval other) {
102 EMPTY
103 }
104
105 override join(Interval other) {
106 other
107 }
108
109 override -() {
110 EMPTY
111 }
112
113 override +(Interval other) {
114 EMPTY
115 }
116
117 override -(Interval other) {
118 EMPTY
119 }
120
121 override *(int count) {
122 EMPTY
123 }
124
125 override *(Interval other) {
126 EMPTY
127 }
128
129 override /(Interval other) {
130 EMPTY
131 }
132
133 override **(Interval other) {
134 EMPTY
135 }
136
137 override toString() {
138 "∅"
139 }
140
141 override compareTo(Interval o) {
142 if (o == EMPTY) {
143 0
144 } else {
145 -1
146 }
147 }
148
149 }
150
151 public static val Interval ZERO = new NonEmpty(BigDecimal.ZERO, BigDecimal.ZERO)
152
153 public static val Interval UNBOUNDED = new NonEmpty(null, null)
154
155 static def Interval of(BigDecimal lower, BigDecimal upper) {
156 new NonEmpty(lower, upper)
157 }
158
159 static def between(double lower, double upper) {
160 of(new BigDecimal(lower, ROUND_DOWN), new BigDecimal(upper, ROUND_UP))
161 }
162
163 static def upTo(double upper) {
164 of(null, new BigDecimal(upper, ROUND_UP))
165 }
166
167 static def above(double lower) {
168 of(new BigDecimal(lower, ROUND_DOWN), null)
169 }
170
171 @Data
172 private static class NonEmpty extends Interval {
173 val BigDecimal lower
174 val BigDecimal upper
175
176 /**
177 * Construct a new non-empty interval.
178 *
179 * @param lower The lower bound of the interval. Use <code>null</code> for negative infinity.
180 * @param upper The upper bound of the interval. Use <code>null</code> for positive infinity.
181 */
182 new(BigDecimal lower, BigDecimal upper) {
183 if (lower !== null && upper !== null && lower > upper) {
184 throw new IllegalArgumentException("Lower bound of interval must not be larger than upper bound")
185 }
186 this.lower = lower
187 this.upper = upper
188 }
189
190 override mustEqual(Interval other) {
191 switch (other) {
192 case EMPTY: true
193 NonEmpty: lower == upper && lower == other.lower && lower == other.upper
194 default: throw new IllegalArgumentException("Unknown interval: " + other)
195 }
196 }
197
198 override mayEqual(Interval other) {
199 if (other instanceof NonEmpty) {
200 (lower === null || other.upper === null || lower <= other.upper) &&
201 (other.lower === null || upper === null || other.lower <= upper)
202 } else {
203 false
204 }
205 }
206
207 override mustBeLessThan(Interval other) {
208 switch (other) {
209 case EMPTY: true
210 NonEmpty: upper !== null && other.lower !== null && upper < other.lower
211 default: throw new IllegalArgumentException("Unknown interval: " + other)
212 }
213 }
214
215 override mayBeLessThan(Interval other) {
216 if (other instanceof NonEmpty) {
217 lower === null || other.upper === null || lower < other.upper
218 } else {
219 false
220 }
221 }
222
223 override min(Interval other) {
224 switch (other) {
225 case EMPTY: this
226 NonEmpty: min(other)
227 default: throw new IllegalArgumentException("Unknown interval: " + other)
228 }
229 }
230
231 def min(NonEmpty other) {
232 new NonEmpty(
233 lower.tryMin(other.lower),
234 if(other.upper === null) upper else if(upper === null) other.upper else upper.min(other.upper)
235 )
236 }
237
238 override max(Interval other) {
239 switch (other) {
240 case EMPTY: this
241 NonEmpty: max(other)
242 default: throw new IllegalArgumentException("Unknown interval: " + other)
243 }
244 }
245
246 def max(NonEmpty other) {
247 new NonEmpty(
248 if(other.lower === null) lower else if(lower === null) other.lower else lower.max(other.lower),
249 upper.tryMax(other.upper)
250 )
251 }
252
253 override join(Interval other) {
254 switch (other) {
255 case EMPTY: this
256 NonEmpty: new NonEmpty(lower.tryMin(other.lower), upper.tryMax(other.upper))
257 default: throw new IllegalArgumentException("Unknown interval: " + other)
258 }
259 }
260
261 override -() {
262 new NonEmpty(upper?.negate(ROUND_DOWN), lower?.negate(ROUND_UP))
263 }
264
265 override +(Interval other) {
266 switch (other) {
267 case EMPTY: EMPTY
268 NonEmpty: this + other
269 default: throw new IllegalArgumentException("Unknown interval: " + other)
270 }
271 }
272
273 def +(NonEmpty other) {
274 new NonEmpty(
275 lower.tryAdd(other.lower, ROUND_DOWN),
276 upper.tryAdd(other.upper, ROUND_UP)
277 )
278 }
279
280 private static def tryAdd(BigDecimal a, BigDecimal b, MathContext mc) {
281 if (b === null) {
282 null
283 } else {
284 a?.add(b, mc)
285 }
286 }
287
288 override -(Interval other) {
289 switch (other) {
290 case EMPTY: EMPTY
291 NonEmpty: this - other
292 default: throw new IllegalArgumentException("Unknown interval: " + other)
293 }
294 }
295
296 def -(NonEmpty other) {
297 new NonEmpty(
298 lower.trySubtract(other.upper, ROUND_DOWN),
299 upper.trySubtract(other.lower, ROUND_UP)
300 )
301 }
302
303 private static def trySubtract(BigDecimal a, BigDecimal b, MathContext mc) {
304 if (b === null) {
305 null
306 } else {
307 a?.subtract(b, mc)
308 }
309 }
310
311 override *(int count) {
312 val bigCount = new BigDecimal(count)
313 new NonEmpty(
314 lower.tryMultiply(bigCount, ROUND_DOWN),
315 upper.tryMultiply(bigCount, ROUND_UP)
316 )
317 }
318
319 override *(Interval other) {
320 switch (other) {
321 case EMPTY: EMPTY
322 NonEmpty: this * other
323 default: throw new IllegalArgumentException("Unknown interval: " + other)
324 }
325 }
326
327 def *(NonEmpty other) {
328 if (this == ZERO || other == ZERO) {
329 ZERO
330 } else if (nonpositive) {
331 if (other.nonpositive) {
332 new NonEmpty(
333 upper.multiply(other.upper, ROUND_DOWN),
334 lower.tryMultiply(other.lower, ROUND_UP)
335 )
336 } else if (other.nonnegative) {
337 new NonEmpty(
338 lower.tryMultiply(other.upper, ROUND_DOWN),
339 upper.multiply(other.lower, ROUND_UP)
340 )
341 } else {
342 new NonEmpty(
343 lower.tryMultiply(other.upper, ROUND_DOWN),
344 lower.tryMultiply(other.lower, ROUND_UP)
345 )
346 }
347 } else if (nonnegative) {
348 if (other.nonpositive) {
349 new NonEmpty(
350 upper.tryMultiply(other.lower, ROUND_DOWN),
351 lower.multiply(other.upper, ROUND_UP)
352 )
353 } else if (other.nonnegative) {
354 new NonEmpty(
355 lower.multiply(other.lower, ROUND_DOWN),
356 upper.tryMultiply(other.upper, ROUND_UP)
357 )
358 } else {
359 new NonEmpty(
360 upper.tryMultiply(other.lower, ROUND_DOWN),
361 upper.tryMultiply(other.upper, ROUND_UP)
362 )
363 }
364 } else {
365 if (other.nonpositive) {
366 new NonEmpty(
367 upper.tryMultiply(other.lower, ROUND_DOWN),
368 lower.tryMultiply(other.lower, ROUND_UP)
369 )
370 } else if (other.nonnegative) {
371 new NonEmpty(
372 lower.tryMultiply(other.upper, ROUND_DOWN),
373 upper.tryMultiply(other.upper, ROUND_UP)
374 )
375 } else {
376 new NonEmpty(
377 lower.tryMultiply(other.upper, ROUND_DOWN).tryMin(upper.tryMultiply(other.lower, ROUND_DOWN)),
378 lower.tryMultiply(other.lower, ROUND_UP).tryMax(upper.tryMultiply(other.upper, ROUND_UP))
379 )
380 }
381 }
382 }
383
384 private def isNonpositive() {
385 upper !== null && upper <= BigDecimal.ZERO
386 }
387
388 private def isNonnegative() {
389 lower !== null && lower >= BigDecimal.ZERO
390 }
391
392 private static def tryMultiply(BigDecimal a, BigDecimal b, MathContext mc) {
393 if (b === null) {
394 null
395 } else {
396 a?.multiply(b, mc)
397 }
398 }
399
400 private static def tryMin(BigDecimal a, BigDecimal b) {
401 if (b === null) {
402 null
403 } else {
404 a?.min(b)
405 }
406 }
407
408 private static def tryMax(BigDecimal a, BigDecimal b) {
409 if (b === null) {
410 null
411 } else {
412 a?.max(b)
413 }
414 }
415
416 override /(Interval other) {
417 switch (other) {
418 case EMPTY: EMPTY
419 NonEmpty: this / other
420 default: throw new IllegalArgumentException("Unknown interval: " + other)
421 }
422 }
423
424 def /(NonEmpty other) {
425 if (other == ZERO) {
426 EMPTY
427 } else if (this == ZERO) {
428 ZERO
429 } else if (other.strictlyNegative) {
430 if (nonpositive) {
431 new NonEmpty(
432 upper.tryDivide(other.lower, ROUND_DOWN),
433 lower.tryDivide(other.upper, ROUND_UP)
434 )
435 } else if (nonnegative) {
436 new NonEmpty(
437 upper.tryDivide(other.upper, ROUND_DOWN),
438 lower.tryDivide(other.lower, ROUND_UP)
439 )
440 } else { // lower < 0 < upper
441 new NonEmpty(
442 upper.tryDivide(other.upper, ROUND_DOWN),
443 lower.tryDivide(other.upper, ROUND_UP)
444 )
445 }
446 } else if (other.strictlyPositive) {
447 if (nonpositive) {
448 new NonEmpty(
449 lower.tryDivide(other.lower, ROUND_DOWN),
450 upper.tryDivide(other.upper, ROUND_UP)
451 )
452 } else if (nonnegative) {
453 new NonEmpty(
454 lower.tryDivide(other.upper, ROUND_DOWN),
455 upper.tryDivide(other.lower, ROUND_UP)
456 )
457 } else { // lower < 0 < upper
458 new NonEmpty(
459 lower.tryDivide(other.lower, ROUND_DOWN),
460 upper.tryDivide(other.lower, ROUND_UP)
461 )
462 }
463 } else { // other contains 0
464 if (other.lower == BigDecimal.ZERO) { // 0 == other.lower < other.upper, because [0, 0] was exluded earlier
465 if (nonpositive) {
466 new NonEmpty(null, upper.tryDivide(other.upper, ROUND_UP))
467 } else if (nonnegative) {
468 new NonEmpty(lower.tryDivide(other.upper, ROUND_DOWN), null)
469 } else { // lower < 0 < upper
470 UNBOUNDED
471 }
472 } else if (other.upper == BigDecimal.ZERO) { // other.lower < other.upper == 0
473 if (nonpositive) {
474 new NonEmpty(upper.tryDivide(other.lower, ROUND_DOWN), null)
475 } else if (nonnegative) {
476 new NonEmpty(null, lower.tryDivide(other.lower, ROUND_UP))
477 } else { // lower < 0 < upper
478 UNBOUNDED
479 }
480 } else { // other.lower < 0 < other.upper
481 UNBOUNDED
482 }
483 }
484 }
485
486 private def isStrictlyNegative() {
487 upper !== null && upper < BigDecimal.ZERO
488 }
489
490 private def isStrictlyPositive() {
491 lower !== null && lower > BigDecimal.ZERO
492 }
493
494 private static def tryDivide(BigDecimal a, BigDecimal b, MathContext mc) {
495 if (b === null) {
496 BigDecimal.ZERO
497 } else {
498 a?.divide(b, mc)
499 }
500 }
501
502 override **(Interval other) {
503 switch (other) {
504 case EMPTY: EMPTY
505 NonEmpty: this ** other
506 default: throw new IllegalArgumentException("Unknown interval: " + other)
507 }
508 }
509
510 def **(NonEmpty other) {
511 // XXX This should use proper rounding for log and exp instead of
512 // converting to double.
513 // XXX We should not ignore (integer) powers of negative numbers.
514 val lowerLog = if (lower === null || lower <= BigDecimal.ZERO) {
515 null
516 } else {
517 new BigDecimal(Math.log(lower.doubleValue), ROUND_DOWN)
518 }
519 val upperLog = if (upper === null) {
520 null
521 } else if (upper == BigDecimal.ZERO) {
522 return ZERO
523 } else if (upper < BigDecimal.ZERO) {
524 return EMPTY
525 } else {
526 new BigDecimal(Math.log(upper.doubleValue), ROUND_UP)
527 }
528 val log = new NonEmpty(lowerLog, upperLog)
529 val product = log * other
530 if (product instanceof NonEmpty) {
531 val lowerResult = if (product.lower === null) {
532 BigDecimal.ZERO
533 } else {
534 new BigDecimal(Math.exp(product.lower.doubleValue), ROUND_DOWN)
535 }
536 val upperResult = if (product.upper === null) {
537 null
538 } else {
539 new BigDecimal(Math.exp(product.upper.doubleValue), ROUND_UP)
540 }
541 new NonEmpty(lowerResult, upperResult)
542 } else {
543 throw new IllegalArgumentException("Unknown interval: " + product)
544 }
545 }
546
547 override toString() {
548 '''«IF lower === null»(-∞«ELSE»[«lower»«ENDIF», «IF upper === null»∞)«ELSE»«upper»]«ENDIF»'''
549 }
550
551 override compareTo(Interval o) {
552 switch (o) {
553 case EMPTY: 1
554 NonEmpty: compareTo(o)
555 default: throw new IllegalArgumentException("Unknown interval: " + o)
556 }
557 }
558
559 def compareTo(NonEmpty o) {
560 if (lower === null) {
561 if (o.lower !== null) {
562 return -1
563 }
564 } else if (o.lower === null) { // lower !== null
565 return 1
566 } else { // both lower and o.lower are finite
567 val lowerDifference = lower.compareTo(o.lower)
568 if (lowerDifference != 0) {
569 return lowerDifference
570 }
571 }
572 if (upper === null) {
573 if (o.upper === null) {
574 return 0
575 } else {
576 return 1
577 }
578 } else if (o.upper === null) { // upper !== null
579 return -1
580 }
581 upper.compareTo(o.upper)
582 }
583 }
584}
diff --git a/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalAggregationMode.java b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalAggregationMode.java
new file mode 100644
index 00000000..f106e305
--- /dev/null
+++ b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalAggregationMode.java
@@ -0,0 +1,99 @@
1package hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval;
2
3import java.util.function.BinaryOperator;
4
5public enum IntervalAggregationMode implements BinaryOperator<Interval> {
6 SUM("intervalSum", "Sum a set of intervals") {
7 @Override
8 public IntervalRedBlackNode createNode(Interval interval) {
9 return new IntervalRedBlackNode(interval) {
10 public boolean isMultiplicitySensitive() {
11 return true;
12 }
13
14 public Interval multiply(Interval interval, int count) {
15 return interval.operator_multiply(count);
16 };
17
18 @Override
19 public Interval op(Interval left, Interval right) {
20 return left.operator_plus(right);
21 }
22 };
23 }
24
25 @Override
26 public Interval getNeutral() {
27 return Interval.ZERO;
28 }
29 },
30
31 MIN("intervalMin", "Find the minimum a set of intervals") {
32 @Override
33 public IntervalRedBlackNode createNode(Interval interval) {
34 return new IntervalRedBlackNode(interval) {
35 @Override
36 public Interval op(Interval left, Interval right) {
37 return left.min(right);
38 }
39 };
40 }
41 },
42
43 MAX("intervalMax", "Find the maximum a set of intervals") {
44 @Override
45 public IntervalRedBlackNode createNode(Interval interval) {
46 return new IntervalRedBlackNode(interval) {
47 @Override
48 public Interval op(Interval left, Interval right) {
49 return left.max(right);
50 }
51 };
52 }
53 },
54
55 JOIN("intervalJoin", "Calculate the smallest interval containing all the intervals in a set") {
56 @Override
57 public IntervalRedBlackNode createNode(Interval interval) {
58 return new IntervalRedBlackNode(interval) {
59 @Override
60 public Interval op(Interval left, Interval right) {
61 return left.join(right);
62 }
63 };
64 }
65 };
66
67 private final String modeName;
68 private final String description;
69 private final IntervalRedBlackNode empty;
70
71 IntervalAggregationMode(String modeName, String description) {
72 this.modeName = modeName;
73 this.description = description;
74 empty = createNode(null);
75 }
76
77 public String getModeName() {
78 return modeName;
79 }
80
81 public String getDescription() {
82 return description;
83 }
84
85 public IntervalRedBlackNode getEmpty() {
86 return empty;
87 }
88
89 @Override
90 public Interval apply(Interval left, Interval right) {
91 return empty.op(left, right);
92 }
93
94 public abstract IntervalRedBlackNode createNode(Interval interval);
95
96 public Interval getNeutral() {
97 return Interval.EMPTY;
98 }
99}
diff --git a/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalAggregationOperator.xtend b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalAggregationOperator.xtend
new file mode 100644
index 00000000..21d3d73b
--- /dev/null
+++ b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalAggregationOperator.xtend
@@ -0,0 +1,48 @@
1package hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval
2
3import java.util.stream.Stream
4import org.eclipse.viatra.query.runtime.matchers.psystem.aggregations.IMultisetAggregationOperator
5import org.eclipse.xtend.lib.annotations.Accessors
6import org.eclipse.xtend.lib.annotations.FinalFieldsConstructor
7
8@FinalFieldsConstructor
9class IntervalAggregationOperator implements IMultisetAggregationOperator<Interval, IntervalRedBlackNode, Interval> {
10 @Accessors val IntervalAggregationMode mode
11
12 override getName() {
13 mode.modeName
14 }
15
16 override getShortDescription() {
17 mode.description
18 }
19
20 override createNeutral() {
21 mode.empty
22 }
23
24 override isNeutral(IntervalRedBlackNode result) {
25 result.leaf
26 }
27
28 override update(IntervalRedBlackNode oldResult, Interval updateValue, boolean isInsertion) {
29 if (isInsertion) {
30 val newNode = mode.createNode(updateValue)
31 oldResult.add(newNode)
32 } else {
33 oldResult.remove(updateValue)
34 }
35 }
36
37 override getAggregate(IntervalRedBlackNode result) {
38 if (result.leaf) {
39 mode.neutral
40 } else {
41 result.result
42 }
43 }
44
45 override aggregateStream(Stream<Interval> stream) {
46 stream.reduce(mode).orElse(mode.neutral)
47 }
48}
diff --git a/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalHullAggregatorOperator.xtend b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalHullAggregatorOperator.xtend
new file mode 100644
index 00000000..ce48eca1
--- /dev/null
+++ b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalHullAggregatorOperator.xtend
@@ -0,0 +1,87 @@
1package hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval
2
3import java.math.BigDecimal
4import java.math.MathContext
5import java.util.SortedMap
6import java.util.TreeMap
7import java.util.stream.Stream
8import org.eclipse.viatra.query.runtime.matchers.psystem.aggregations.IMultisetAggregationOperator
9
10abstract class IntervalHullAggregatorOperator<T extends Comparable<T>> implements IMultisetAggregationOperator<T, SortedMap<T, Integer>, Interval> {
11 protected new() {
12 }
13
14 override getName() {
15 "intervalHull"
16 }
17
18 override getShortDescription() {
19 "Calculates the interval hull of a set of numbers"
20 }
21
22 override createNeutral() {
23 new TreeMap
24 }
25
26 override getAggregate(SortedMap<T, Integer> result) {
27 if (result.neutral) {
28 Interval.EMPTY
29 } else {
30 toInterval(result.firstKey, result.lastKey)
31 }
32 }
33
34 protected abstract def BigDecimal toBigDecimal(T value, MathContext mc)
35
36 private def toInterval(T min, T max) {
37 Interval.of(min.toBigDecimal(Interval.ROUND_DOWN), max.toBigDecimal(Interval.ROUND_UP))
38 }
39
40 override isNeutral(SortedMap<T, Integer> result) {
41 result.empty
42 }
43
44 override update(SortedMap<T, Integer> oldResult, T updateValue, boolean isInsertion) {
45 if (isInsertion) {
46 oldResult.compute(updateValue) [ key, value |
47 if (value === null) {
48 1
49 } else if (value > 0) {
50 value + 1
51 } else {
52 throw new IllegalStateException("Invalid count: " + value)
53 }
54 ]
55 } else {
56 oldResult.compute(updateValue) [ key, value |
57 if (value === 1) {
58 null
59 } else if (value > 1) {
60 value - 1
61 } else {
62 throw new IllegalStateException("Invalid count: " + value)
63 }
64 ]
65 }
66 oldResult
67 }
68
69 override aggregateStream(Stream<T> stream) {
70 val iterator = stream.iterator
71 if (!iterator.hasNext) {
72 return Interval.EMPTY
73 }
74 var min = iterator.next
75 var max = min
76 while (iterator.hasNext) {
77 val element = iterator.next
78 if (element.compareTo(min) < 0) {
79 min = element
80 }
81 if (element.compareTo(max) > 0) {
82 max = element
83 }
84 }
85 toInterval(min, max)
86 }
87}
diff --git a/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalRedBlackNode.xtend b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalRedBlackNode.xtend
new file mode 100644
index 00000000..3aa575bc
--- /dev/null
+++ b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalRedBlackNode.xtend
@@ -0,0 +1,177 @@
1package hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval
2
3abstract class IntervalRedBlackNode extends RedBlackNode<IntervalRedBlackNode> {
4 public val Interval interval
5 public var int count = 1
6 public var Interval result
7
8 new(Interval interval) {
9 this.interval = interval
10 }
11
12 def boolean isMultiplicitySensitive() {
13 false
14 }
15
16 def Interval multiply(Interval interval, int count) {
17 interval
18 }
19
20 abstract def Interval op(Interval left, Interval right)
21
22 override augment() {
23 val value = calcualteAugmentation()
24 if (result == value) {
25 false
26 } else {
27 result = value
28 true
29 }
30 }
31
32 private def calcualteAugmentation() {
33 var value = multiply(interval, count)
34 if (!left.leaf) {
35 value = op(value, left.result)
36 }
37 if (!right.leaf) {
38 value = op(value, right.result)
39 }
40 value
41 }
42
43 override assertNodeIsValid() {
44 super.assertNodeIsValid()
45 if (leaf) {
46 return
47 }
48 if (count <= 0) {
49 throw new IllegalStateException("Node with nonpositive count")
50 }
51 val value = calcualteAugmentation()
52 if (result != value) {
53 throw new IllegalStateException("Node with invalid augmentation: " + result + " != " + value)
54 }
55 }
56
57 override assertSubtreeIsValid() {
58 super.assertSubtreeIsValid()
59 assertNodeIsValid()
60 }
61
62 override compareTo(IntervalRedBlackNode other) {
63 if (leaf || other.leaf) {
64 throw new IllegalArgumentException("One of the nodes is a leaf node")
65 }
66 interval.compareTo(other.interval)
67 }
68
69 def add(IntervalRedBlackNode newNode) {
70 if (parent !== null) {
71 throw new IllegalArgumentException("This is not the root of a tree")
72 }
73 if (leaf) {
74 newNode.isRed = false
75 newNode.left = this
76 newNode.right = this
77 newNode.parent = null
78 newNode.augment
79 return newNode
80 }
81 val modifiedNode = addWithoutFixup(newNode)
82 if (modifiedNode === newNode) {
83 // Must augment here, because fixInsertion() might call augment()
84 // on a node repeatedly, which might lose the change notification the
85 // second time it is called, and the augmentation will fail to
86 // reach the root.
87 modifiedNode.augmentRecursively
88 modifiedNode.isRed = true
89 return modifiedNode.fixInsertion
90 }
91 if (multiplicitySensitive) {
92 modifiedNode.augmentRecursively
93 }
94 this
95 }
96
97 private def addWithoutFixup(IntervalRedBlackNode newNode) {
98 var node = this
99 while (!node.leaf) {
100 val comparison = node.interval.compareTo(newNode.interval)
101 if (comparison < 0) {
102 if (node.left.leaf) {
103 newNode.left = node.left
104 newNode.right = node.left
105 node.left = newNode
106 newNode.parent = node
107 return newNode
108 } else {
109 node = node.left
110 }
111 } else if (comparison > 0) {
112 if (node.right.leaf) {
113 newNode.left = node.right
114 newNode.right = node.right
115 node.right = newNode
116 newNode.parent = node
117 return newNode
118 } else {
119 node = node.right
120 }
121 } else { // comparison == 0
122 newNode.parent = null
123 node.count++
124 return node
125 }
126 }
127 throw new IllegalStateException("Reached leaf node while searching for insertion point")
128 }
129
130 private def augmentRecursively() {
131 for (var node = this; node !== null; node = node.parent) {
132 if (!node.augment) {
133 return
134 }
135 }
136 }
137
138 def remove(Interval interval) {
139 val node = find(interval)
140 node.count--
141 if (node.count == 0) {
142 return node.remove
143 }
144 if (multiplicitySensitive) {
145 node.augmentRecursively
146 }
147 this
148 }
149
150 private def find(Interval interval) {
151 var node = this
152 while (!node.leaf) {
153 val comparison = node.interval.compareTo(interval)
154 if (comparison < 0) {
155 node = node.left
156 } else if (comparison > 0) {
157 node = node.right
158 } else { // comparison == 0
159 return node
160 }
161 }
162 throw new IllegalStateException("Reached leaf node while searching for interval to remove")
163 }
164
165 override toString() {
166 if (leaf) {
167 "L"
168 } else {
169 '''
170 «IF isRed»R«ELSE»B«ENDIF» «count»«interval» : «result»
171 «left»
172 «right»
173 '''
174 }
175 }
176
177}
diff --git a/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/RedBlackNode.java b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/RedBlackNode.java
new file mode 100644
index 00000000..8c40816b
--- /dev/null
+++ b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/RedBlackNode.java
@@ -0,0 +1,1392 @@
1/*
2 * The MIT License (MIT)
3 *
4 * Copyright (c) 2016 btrekkie
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24package hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval;
25
26import java.lang.reflect.Array;
27import java.util.Collection;
28import java.util.Comparator;
29import java.util.HashSet;
30import java.util.Iterator;
31import java.util.Set;
32
33/**
34 * A node in a red-black tree ( https://en.wikipedia.org/wiki/Red%E2%80%93black_tree ). Compared to a class like Java's
35 * TreeMap, RedBlackNode is a low-level data structure. The internals of a node are exposed as public fields, allowing
36 * clients to directly observe and manipulate the structure of the tree. This gives clients flexibility, although it
37 * also enables them to violate the red-black or BST properties. The RedBlackNode class provides methods for performing
38 * various standard operations, such as insertion and removal.
39 *
40 * Unlike most implementations of binary search trees, RedBlackNode supports arbitrary augmentation. By subclassing
41 * RedBlackNode, clients can add arbitrary data and augmentation information to each node. For example, if we were to
42 * use a RedBlackNode subclass to implement a sorted set, the subclass would have a field storing an element in the set.
43 * If we wanted to keep track of the number of non-leaf nodes in each subtree, we would store this as a "size" field and
44 * override augment() to update this field. All RedBlackNode methods (such as "insert" and remove()) call augment() as
45 * necessary to correctly maintain the augmentation information, unless otherwise indicated.
46 *
47 * The values of the tree are stored in the non-leaf nodes. RedBlackNode does not support use cases where values must be
48 * stored in the leaf nodes. It is recommended that all of the leaf nodes in a given tree be the same (black)
49 * RedBlackNode instance, to save space. The root of an empty tree is a leaf node, as opposed to null.
50 *
51 * For reference, a red-black tree is a binary search tree satisfying the following properties:
52 *
53 * - Every node is colored red or black.
54 * - The leaf nodes, which are dummy nodes that do not store any values, are colored black.
55 * - The root is black.
56 * - Both children of each red node are black.
57 * - Every path from the root to a leaf contains the same number of black nodes.
58 *
59 * @param <N> The type of node in the tree. For example, we might have
60 * "class FooNode<T> extends RedBlackNode<FooNode<T>>".
61 * @author Bill Jacobs
62 */
63public abstract class RedBlackNode<N extends RedBlackNode<N>> implements Comparable<N> {
64 /** A Comparator that compares Comparable elements using their natural order. */
65 private static final Comparator<Comparable<Object>> NATURAL_ORDER = new Comparator<Comparable<Object>>() {
66 @Override
67 public int compare(Comparable<Object> value1, Comparable<Object> value2) {
68 return value1.compareTo(value2);
69 }
70 };
71
72 /** The parent of this node, if any. "parent" is null if this is a leaf node. */
73 public N parent;
74
75 /** The left child of this node. "left" is null if this is a leaf node. */
76 public N left;
77
78 /** The right child of this node. "right" is null if this is a leaf node. */
79 public N right;
80
81 /** Whether the node is colored red, as opposed to black. */
82 public boolean isRed;
83
84 /**
85 * Sets any augmentation information about the subtree rooted at this node that is stored in this node. For
86 * example, if we augment each node by subtree size (the number of non-leaf nodes in the subtree), this method would
87 * set the size field of this node to be equal to the size field of the left child plus the size field of the right
88 * child plus one.
89 *
90 * "Augmentation information" is information that we can compute about a subtree rooted at some node, preferably
91 * based only on the augmentation information in the node's two children and the information in the node. Examples
92 * of augmentation information are the sum of the values in a subtree and the number of non-leaf nodes in a subtree.
93 * Augmentation information may not depend on the colors of the nodes.
94 *
95 * This method returns whether the augmentation information in any of the ancestors of this node might have been
96 * affected by changes in this subtree since the last call to augment(). In the usual case, where the augmentation
97 * information depends only on the information in this node and the augmentation information in its immediate
98 * children, this is equivalent to whether the augmentation information changed as a result of this call to
99 * augment(). For example, in the case of subtree size, this returns whether the value of the size field prior to
100 * calling augment() differed from the size field of the left child plus the size field of the right child plus one.
101 * False positives are permitted. The return value is unspecified if we have not called augment() on this node
102 * before.
103 *
104 * This method may assume that this is not a leaf node. It may not assume that the augmentation information stored
105 * in any of the tree's nodes is correct. However, if the augmentation information stored in all of the node's
106 * descendants is correct, then the augmentation information stored in this node must be correct after calling
107 * augment().
108 */
109 public boolean augment() {
110 return false;
111 }
112
113 /**
114 * Throws a RuntimeException if we detect that this node locally violates any invariants specific to this subclass
115 * of RedBlackNode. For example, if this stores the size of the subtree rooted at this node, this should throw a
116 * RuntimeException if the size field of this is not equal to the size field of the left child plus the size field
117 * of the right child plus one. Note that we may call this on a leaf node.
118 *
119 * assertSubtreeIsValid() calls assertNodeIsValid() on each node, or at least starts to do so until it detects a
120 * problem. assertNodeIsValid() should assume the node is in a tree that satisfies all properties common to all
121 * red-black trees, as assertSubtreeIsValid() is responsible for such checks. assertNodeIsValid() should be
122 * "downward-looking", i.e. it should ignore any information in "parent", and it should be "local", i.e. it should
123 * only check a constant number of descendants. To include "global" checks, such as verifying the BST property
124 * concerning ordering, override assertSubtreeIsValid(). assertOrderIsValid is useful for checking the BST
125 * property.
126 */
127 public void assertNodeIsValid() {
128
129 }
130
131 /** Returns whether this is a leaf node. */
132 public boolean isLeaf() {
133 return left == null;
134 }
135
136 /** Returns the root of the tree that contains this node. */
137 public N root() {
138 @SuppressWarnings("unchecked")
139 N node = (N)this;
140 while (node.parent != null) {
141 node = node.parent;
142 }
143 return node;
144 }
145
146 /** Returns the first node in the subtree rooted at this node, if any. */
147 public N min() {
148 if (isLeaf()) {
149 return null;
150 }
151 @SuppressWarnings("unchecked")
152 N node = (N)this;
153 while (!node.left.isLeaf()) {
154 node = node.left;
155 }
156 return node;
157 }
158
159 /** Returns the last node in the subtree rooted at this node, if any. */
160 public N max() {
161 if (isLeaf()) {
162 return null;
163 }
164 @SuppressWarnings("unchecked")
165 N node = (N)this;
166 while (!node.right.isLeaf()) {
167 node = node.right;
168 }
169 return node;
170 }
171
172 /** Returns the node immediately before this in the tree that contains this node, if any. */
173 public N predecessor() {
174 if (!left.isLeaf()) {
175 N node;
176 for (node = left; !node.right.isLeaf(); node = node.right);
177 return node;
178 } else if (parent == null) {
179 return null;
180 } else {
181 @SuppressWarnings("unchecked")
182 N node = (N)this;
183 while (node.parent != null && node.parent.left == node) {
184 node = node.parent;
185 }
186 return node.parent;
187 }
188 }
189
190 /** Returns the node immediately after this in the tree that contains this node, if any. */
191 public N successor() {
192 if (!right.isLeaf()) {
193 N node;
194 for (node = right; !node.left.isLeaf(); node = node.left);
195 return node;
196 } else if (parent == null) {
197 return null;
198 } else {
199 @SuppressWarnings("unchecked")
200 N node = (N)this;
201 while (node.parent != null && node.parent.right == node) {
202 node = node.parent;
203 }
204 return node.parent;
205 }
206 }
207
208 /**
209 * Performs a left rotation about this node. This method assumes that !isLeaf() && !right.isLeaf(). It calls
210 * augment() on this node and on its resulting parent. However, it does not call augment() on any of the resulting
211 * parent's ancestors, because that is normally the responsibility of the caller.
212 * @return The return value from calling augment() on the resulting parent.
213 */
214 public boolean rotateLeft() {
215 if (isLeaf() || right.isLeaf()) {
216 throw new IllegalArgumentException("The node or its right child is a leaf");
217 }
218 N newParent = right;
219 right = newParent.left;
220 @SuppressWarnings("unchecked")
221 N nThis = (N)this;
222 if (!right.isLeaf()) {
223 right.parent = nThis;
224 }
225 newParent.parent = parent;
226 parent = newParent;
227 newParent.left = nThis;
228 if (newParent.parent != null) {
229 if (newParent.parent.left == this) {
230 newParent.parent.left = newParent;
231 } else {
232 newParent.parent.right = newParent;
233 }
234 }
235 augment();
236 return newParent.augment();
237 }
238
239 /**
240 * Performs a right rotation about this node. This method assumes that !isLeaf() && !left.isLeaf(). It calls
241 * augment() on this node and on its resulting parent. However, it does not call augment() on any of the resulting
242 * parent's ancestors, because that is normally the responsibility of the caller.
243 * @return The return value from calling augment() on the resulting parent.
244 */
245 public boolean rotateRight() {
246 if (isLeaf() || left.isLeaf()) {
247 throw new IllegalArgumentException("The node or its left child is a leaf");
248 }
249 N newParent = left;
250 left = newParent.right;
251 @SuppressWarnings("unchecked")
252 N nThis = (N)this;
253 if (!left.isLeaf()) {
254 left.parent = nThis;
255 }
256 newParent.parent = parent;
257 parent = newParent;
258 newParent.right = nThis;
259 if (newParent.parent != null) {
260 if (newParent.parent.left == this) {
261 newParent.parent.left = newParent;
262 } else {
263 newParent.parent.right = newParent;
264 }
265 }
266 augment();
267 return newParent.augment();
268 }
269
270 /**
271 * Performs red-black insertion fixup. To be more precise, this fixes a tree that satisfies all of the requirements
272 * of red-black trees, except that this may be a red child of a red node, and if this is the root, the root may be
273 * red. node.isRed must initially be true. This method assumes that this is not a leaf node. The method performs
274 * any rotations by calling rotateLeft() and rotateRight(). This method is more efficient than fixInsertion if
275 * "augment" is false or augment() might return false.
276 * @param augment Whether to set the augmentation information for "node" and its ancestors, by calling augment().
277 */
278 public void fixInsertionWithoutGettingRoot(boolean augment) {
279 if (!isRed) {
280 throw new IllegalArgumentException("The node must be red");
281 }
282 boolean changed = augment;
283 if (augment) {
284 augment();
285 }
286
287 RedBlackNode<N> node = this;
288 while (node.parent != null && node.parent.isRed) {
289 N parent = node.parent;
290 N grandparent = parent.parent;
291 if (grandparent.left.isRed && grandparent.right.isRed) {
292 grandparent.left.isRed = false;
293 grandparent.right.isRed = false;
294 grandparent.isRed = true;
295
296 if (changed) {
297 changed = parent.augment();
298 if (changed) {
299 changed = grandparent.augment();
300 }
301 }
302 node = grandparent;
303 } else {
304 if (parent.left == node) {
305 if (grandparent.right == parent) {
306 parent.rotateRight();
307 node = parent;
308 parent = node.parent;
309 }
310 } else if (grandparent.left == parent) {
311 parent.rotateLeft();
312 node = parent;
313 parent = node.parent;
314 }
315
316 if (parent.left == node) {
317 boolean grandparentChanged = grandparent.rotateRight();
318 if (augment) {
319 changed = grandparentChanged;
320 }
321 } else {
322 boolean grandparentChanged = grandparent.rotateLeft();
323 if (augment) {
324 changed = grandparentChanged;
325 }
326 }
327
328 parent.isRed = false;
329 grandparent.isRed = true;
330 node = parent;
331 break;
332 }
333 }
334
335 if (node.parent == null) {
336 node.isRed = false;
337 }
338 if (changed) {
339 for (node = node.parent; node != null; node = node.parent) {
340 if (!node.augment()) {
341 break;
342 }
343 }
344 }
345 }
346
347 /**
348 * Performs red-black insertion fixup. To be more precise, this fixes a tree that satisfies all of the requirements
349 * of red-black trees, except that this may be a red child of a red node, and if this is the root, the root may be
350 * red. node.isRed must initially be true. This method assumes that this is not a leaf node. The method performs
351 * any rotations by calling rotateLeft() and rotateRight(). This method is more efficient than fixInsertion() if
352 * augment() might return false.
353 */
354 public void fixInsertionWithoutGettingRoot() {
355 fixInsertionWithoutGettingRoot(true);
356 }
357
358 /**
359 * Performs red-black insertion fixup. To be more precise, this fixes a tree that satisfies all of the requirements
360 * of red-black trees, except that this may be a red child of a red node, and if this is the root, the root may be
361 * red. node.isRed must initially be true. This method assumes that this is not a leaf node. The method performs
362 * any rotations by calling rotateLeft() and rotateRight().
363 * @param augment Whether to set the augmentation information for "node" and its ancestors, by calling augment().
364 * @return The root of the resulting tree.
365 */
366 public N fixInsertion(boolean augment) {
367 fixInsertionWithoutGettingRoot(augment);
368 return root();
369 }
370
371 /**
372 * Performs red-black insertion fixup. To be more precise, this fixes a tree that satisfies all of the requirements
373 * of red-black trees, except that this may be a red child of a red node, and if this is the root, the root may be
374 * red. node.isRed must initially be true. This method assumes that this is not a leaf node. The method performs
375 * any rotations by calling rotateLeft() and rotateRight().
376 * @return The root of the resulting tree.
377 */
378 public N fixInsertion() {
379 fixInsertionWithoutGettingRoot(true);
380 return root();
381 }
382
383 /** Returns a Comparator that compares instances of N using their natural order, as in N.compareTo. */
384 @SuppressWarnings({"rawtypes", "unchecked"})
385 private Comparator<N> naturalOrder() {
386 Comparator comparator = (Comparator)NATURAL_ORDER;
387 return (Comparator<N>)comparator;
388 }
389
390 /**
391 * Inserts the specified node into the tree rooted at this node. Assumes this is the root. We treat newNode as a
392 * solitary node that does not belong to any tree, and we ignore its initial "parent", "left", "right", and isRed
393 * fields.
394 *
395 * If it is not efficient or convenient to find the location for a node using a Comparator, then you should manually
396 * add the node to the appropriate location, color it red, and call fixInsertion().
397 *
398 * @param newNode The node to insert.
399 * @param allowDuplicates Whether to insert newNode if there is an equal node in the tree. To check whether we
400 * inserted newNode, check whether newNode.parent is null and the return value differs from newNode.
401 * @param comparator A comparator indicating where to put the node. If this is null, we use the nodes' natural
402 * order, as in N.compareTo. If you are passing null, then you must override the compareTo method, because the
403 * default implementation requires the nodes to already be in the same tree.
404 * @return The root of the resulting tree.
405 */
406 public N insert(N newNode, boolean allowDuplicates, Comparator<? super N> comparator) {
407 if (parent != null) {
408 throw new IllegalArgumentException("This is not the root of a tree");
409 }
410 @SuppressWarnings("unchecked")
411 N nThis = (N)this;
412 if (isLeaf()) {
413 newNode.isRed = false;
414 newNode.left = nThis;
415 newNode.right = nThis;
416 newNode.parent = null;
417 newNode.augment();
418 return newNode;
419 }
420 if (comparator == null) {
421 comparator = naturalOrder();
422 }
423
424 N node = nThis;
425 int comparison;
426 while (true) {
427 comparison = comparator.compare(newNode, node);
428 if (comparison < 0) {
429 if (!node.left.isLeaf()) {
430 node = node.left;
431 } else {
432 newNode.left = node.left;
433 newNode.right = node.left;
434 node.left = newNode;
435 newNode.parent = node;
436 break;
437 }
438 } else if (comparison > 0 || allowDuplicates) {
439 if (!node.right.isLeaf()) {
440 node = node.right;
441 } else {
442 newNode.left = node.right;
443 newNode.right = node.right;
444 node.right = newNode;
445 newNode.parent = node;
446 break;
447 }
448 } else {
449 newNode.parent = null;
450 return nThis;
451 }
452 }
453 newNode.isRed = true;
454 return newNode.fixInsertion();
455 }
456
457 /**
458 * Moves this node to its successor's former position in the tree and vice versa, i.e. sets the "left", "right",
459 * "parent", and isRed fields of each. This method assumes that this is not a leaf node.
460 * @return The node with which we swapped.
461 */
462 private N swapWithSuccessor() {
463 N replacement = successor();
464 boolean oldReplacementIsRed = replacement.isRed;
465 N oldReplacementLeft = replacement.left;
466 N oldReplacementRight = replacement.right;
467 N oldReplacementParent = replacement.parent;
468
469 replacement.isRed = isRed;
470 replacement.left = left;
471 replacement.right = right;
472 replacement.parent = parent;
473 if (parent != null) {
474 if (parent.left == this) {
475 parent.left = replacement;
476 } else {
477 parent.right = replacement;
478 }
479 }
480
481 @SuppressWarnings("unchecked")
482 N nThis = (N)this;
483 isRed = oldReplacementIsRed;
484 left = oldReplacementLeft;
485 right = oldReplacementRight;
486 if (oldReplacementParent == this) {
487 parent = replacement;
488 parent.right = nThis;
489 } else {
490 parent = oldReplacementParent;
491 parent.left = nThis;
492 }
493
494 replacement.right.parent = replacement;
495 if (!replacement.left.isLeaf()) {
496 replacement.left.parent = replacement;
497 }
498 if (!right.isLeaf()) {
499 right.parent = nThis;
500 }
501 return replacement;
502 }
503
504 /**
505 * Performs red-black deletion fixup. To be more precise, this fixes a tree that satisfies all of the requirements
506 * of red-black trees, except that all paths from the root to a leaf that pass through the sibling of this node have
507 * one fewer black node than all other root-to-leaf paths. This method assumes that this is not a leaf node.
508 */
509 private void fixSiblingDeletion() {
510 RedBlackNode<N> sibling = this;
511 boolean changed = true;
512 boolean haveAugmentedParent = false;
513 boolean haveAugmentedGrandparent = false;
514 while (true) {
515 N parent = sibling.parent;
516 if (sibling.isRed) {
517 parent.isRed = true;
518 sibling.isRed = false;
519 if (parent.left == sibling) {
520 changed = parent.rotateRight();
521 sibling = parent.left;
522 } else {
523 changed = parent.rotateLeft();
524 sibling = parent.right;
525 }
526 haveAugmentedParent = true;
527 haveAugmentedGrandparent = true;
528 } else if (!sibling.left.isRed && !sibling.right.isRed) {
529 sibling.isRed = true;
530 if (parent.isRed) {
531 parent.isRed = false;
532 break;
533 } else {
534 if (changed && !haveAugmentedParent) {
535 changed = parent.augment();
536 }
537 N grandparent = parent.parent;
538 if (grandparent == null) {
539 break;
540 } else if (grandparent.left == parent) {
541 sibling = grandparent.right;
542 } else {
543 sibling = grandparent.left;
544 }
545 haveAugmentedParent = haveAugmentedGrandparent;
546 haveAugmentedGrandparent = false;
547 }
548 } else {
549 if (sibling == parent.left) {
550 if (!sibling.left.isRed) {
551 sibling.rotateLeft();
552 sibling = sibling.parent;
553 }
554 } else if (!sibling.right.isRed) {
555 sibling.rotateRight();
556 sibling = sibling.parent;
557 }
558 sibling.isRed = parent.isRed;
559 parent.isRed = false;
560 if (sibling == parent.left) {
561 sibling.left.isRed = false;
562 changed = parent.rotateRight();
563 } else {
564 sibling.right.isRed = false;
565 changed = parent.rotateLeft();
566 }
567 haveAugmentedParent = haveAugmentedGrandparent;
568 haveAugmentedGrandparent = false;
569 break;
570 }
571 }
572
573 // Update augmentation info
574 N parent = sibling.parent;
575 if (changed && parent != null) {
576 if (!haveAugmentedParent) {
577 changed = parent.augment();
578 }
579 if (changed && parent.parent != null) {
580 parent = parent.parent;
581 if (!haveAugmentedGrandparent) {
582 changed = parent.augment();
583 }
584 if (changed) {
585 for (parent = parent.parent; parent != null; parent = parent.parent) {
586 if (!parent.augment()) {
587 break;
588 }
589 }
590 }
591 }
592 }
593 }
594
595 /**
596 * Removes this node from the tree that contains it. The effect of this method on the fields of this node is
597 * unspecified. This method assumes that this is not a leaf node. This method is more efficient than remove() if
598 * augment() might return false.
599 *
600 * If the node has two children, we begin by moving the node's successor to its former position, by changing the
601 * successor's "left", "right", "parent", and isRed fields.
602 */
603 public void removeWithoutGettingRoot() {
604 if (isLeaf()) {
605 throw new IllegalArgumentException("Attempted to remove a leaf node");
606 }
607 N replacement;
608 if (left.isLeaf() || right.isLeaf()) {
609 replacement = null;
610 } else {
611 replacement = swapWithSuccessor();
612 }
613
614 N child;
615 if (!left.isLeaf()) {
616 child = left;
617 } else if (!right.isLeaf()) {
618 child = right;
619 } else {
620 child = null;
621 }
622
623 if (child != null) {
624 // Replace this node with its child
625 child.parent = parent;
626 if (parent != null) {
627 if (parent.left == this) {
628 parent.left = child;
629 } else {
630 parent.right = child;
631 }
632 }
633 child.isRed = false;
634
635 if (child.parent != null) {
636 N parent;
637 for (parent = child.parent; parent != null; parent = parent.parent) {
638 if (!parent.augment()) {
639 break;
640 }
641 }
642 }
643 } else if (parent != null) {
644 // Replace this node with a leaf node
645 N leaf = left;
646 N parent = this.parent;
647 N sibling;
648 if (parent.left == this) {
649 parent.left = leaf;
650 sibling = parent.right;
651 } else {
652 parent.right = leaf;
653 sibling = parent.left;
654 }
655
656 if (!isRed) {
657 RedBlackNode<N> siblingNode = sibling;
658 siblingNode.fixSiblingDeletion();
659 } else {
660 while (parent != null) {
661 if (!parent.augment()) {
662 break;
663 }
664 parent = parent.parent;
665 }
666 }
667 }
668
669 if (replacement != null) {
670 replacement.augment();
671 for (N parent = replacement.parent; parent != null; parent = parent.parent) {
672 if (!parent.augment()) {
673 break;
674 }
675 }
676 }
677
678 // Clear any previously existing links, so that we're more likely to encounter an exception if we attempt to
679 // access the removed node
680 parent = null;
681 left = null;
682 right = null;
683 isRed = true;
684 }
685
686 /**
687 * Removes this node from the tree that contains it. The effect of this method on the fields of this node is
688 * unspecified. This method assumes that this is not a leaf node.
689 *
690 * If the node has two children, we begin by moving the node's successor to its former position, by changing the
691 * successor's "left", "right", "parent", and isRed fields.
692 *
693 * @return The root of the resulting tree.
694 */
695 public N remove() {
696 if (isLeaf()) {
697 throw new IllegalArgumentException("Attempted to remove a leaf node");
698 }
699
700 // Find an arbitrary non-leaf node in the tree other than this node
701 N node;
702 if (parent != null) {
703 node = parent;
704 } else if (!left.isLeaf()) {
705 node = left;
706 } else if (!right.isLeaf()) {
707 node = right;
708 } else {
709 return left;
710 }
711
712 removeWithoutGettingRoot();
713 return node.root();
714 }
715
716 /**
717 * Returns the root of a perfectly height-balanced subtree containing the next "size" (non-leaf) nodes from
718 * "iterator", in iteration order. This method is responsible for setting the "left", "right", "parent", and isRed
719 * fields of the nodes, and calling augment() as appropriate. It ignores the initial values of the "left", "right",
720 * "parent", and isRed fields.
721 * @param iterator The nodes.
722 * @param size The number of nodes.
723 * @param height The "height" of the subtree's root node above the deepest leaf in the tree that contains it. Since
724 * insertion fixup is slow if there are too many red nodes and deleteion fixup is slow if there are too few red
725 * nodes, we compromise and have red nodes at every fourth level. We color a node red iff its "height" is equal
726 * to 1 mod 4.
727 * @param leaf The leaf node.
728 * @return The root of the subtree.
729 */
730 private static <N extends RedBlackNode<N>> N createTree(
731 Iterator<? extends N> iterator, int size, int height, N leaf) {
732 if (size == 0) {
733 return leaf;
734 } else {
735 N left = createTree(iterator, (size - 1) / 2, height - 1, leaf);
736 N node = iterator.next();
737 N right = createTree(iterator, size / 2, height - 1, leaf);
738
739 node.isRed = height % 4 == 1;
740 node.left = left;
741 node.right = right;
742 if (!left.isLeaf()) {
743 left.parent = node;
744 }
745 if (!right.isLeaf()) {
746 right.parent = node;
747 }
748
749 node.augment();
750 return node;
751 }
752 }
753
754 /**
755 * Returns the root of a perfectly height-balanced tree containing the specified nodes, in iteration order. This
756 * method is responsible for setting the "left", "right", "parent", and isRed fields of the nodes (excluding
757 * "leaf"), and calling augment() as appropriate. It ignores the initial values of the "left", "right", "parent",
758 * and isRed fields.
759 * @param nodes The nodes.
760 * @param leaf The leaf node.
761 * @return The root of the tree.
762 */
763 public static <N extends RedBlackNode<N>> N createTree(Collection<? extends N> nodes, N leaf) {
764 int size = nodes.size();
765 if (size == 0) {
766 return leaf;
767 }
768
769 int height = 0;
770 for (int subtreeSize = size; subtreeSize > 0; subtreeSize /= 2) {
771 height++;
772 }
773
774 N node = createTree(nodes.iterator(), size, height, leaf);
775 node.parent = null;
776 node.isRed = false;
777 return node;
778 }
779
780 /**
781 * Concatenates to the end of the tree rooted at this node. To be precise, given that all of the nodes in this
782 * precede the node "pivot", which precedes all of the nodes in "last", this returns the root of a tree containing
783 * all of these nodes. This method destroys the trees rooted at "this" and "last". We treat "pivot" as a solitary
784 * node that does not belong to any tree, and we ignore its initial "parent", "left", "right", and isRed fields.
785 * This method assumes that this node and "last" are the roots of their respective trees.
786 *
787 * This method takes O(log N) time. It is more efficient than inserting "pivot" and then calling concatenate(last).
788 * It is considerably more efficient than inserting "pivot" and all of the nodes in "last".
789 */
790 public N concatenate(N last, N pivot) {
791 // If the black height of "first", where first = this, is less than or equal to that of "last", starting at the
792 // root of "last", we keep going left until we reach a black node whose black height is equal to that of
793 // "first". Then, we make "pivot" the parent of that node and of "first", coloring it red, and perform
794 // insertion fixup on the pivot. If the black height of "first" is greater than that of "last", we do the
795 // mirror image of the above.
796
797 if (parent != null) {
798 throw new IllegalArgumentException("This is not the root of a tree");
799 }
800 if (last.parent != null) {
801 throw new IllegalArgumentException("\"last\" is not the root of a tree");
802 }
803
804 // Compute the black height of the trees
805 int firstBlackHeight = 0;
806 @SuppressWarnings("unchecked")
807 N first = (N)this;
808 for (N node = first; node != null; node = node.right) {
809 if (!node.isRed) {
810 firstBlackHeight++;
811 }
812 }
813 int lastBlackHeight = 0;
814 for (N node = last; node != null; node = node.right) {
815 if (!node.isRed) {
816 lastBlackHeight++;
817 }
818 }
819
820 // Identify the children and parent of pivot
821 N firstChild = first;
822 N lastChild = last;
823 N parent;
824 if (firstBlackHeight <= lastBlackHeight) {
825 parent = null;
826 int blackHeight = lastBlackHeight;
827 while (blackHeight > firstBlackHeight) {
828 if (!lastChild.isRed) {
829 blackHeight--;
830 }
831 parent = lastChild;
832 lastChild = lastChild.left;
833 }
834 if (lastChild.isRed) {
835 parent = lastChild;
836 lastChild = lastChild.left;
837 }
838 } else {
839 parent = null;
840 int blackHeight = firstBlackHeight;
841 while (blackHeight > lastBlackHeight) {
842 if (!firstChild.isRed) {
843 blackHeight--;
844 }
845 parent = firstChild;
846 firstChild = firstChild.right;
847 }
848 if (firstChild.isRed) {
849 parent = firstChild;
850 firstChild = firstChild.right;
851 }
852 }
853
854 // Add "pivot" to the tree
855 pivot.isRed = true;
856 pivot.parent = parent;
857 if (parent != null) {
858 if (firstBlackHeight < lastBlackHeight) {
859 parent.left = pivot;
860 } else {
861 parent.right = pivot;
862 }
863 }
864 pivot.left = firstChild;
865 if (!firstChild.isLeaf()) {
866 firstChild.parent = pivot;
867 }
868 pivot.right = lastChild;
869 if (!lastChild.isLeaf()) {
870 lastChild.parent = pivot;
871 }
872
873 // Perform insertion fixup
874 return pivot.fixInsertion();
875 }
876
877 /**
878 * Concatenates the tree rooted at "last" to the end of the tree rooted at this node. To be precise, given that all
879 * of the nodes in this precede all of the nodes in "last", this returns the root of a tree containing all of these
880 * nodes. This method destroys the trees rooted at "this" and "last". It assumes that this node and "last" are the
881 * roots of their respective trees. This method takes O(log N) time. It is considerably more efficient than
882 * inserting all of the nodes in "last".
883 */
884 public N concatenate(N last) {
885 if (parent != null || last.parent != null) {
886 throw new IllegalArgumentException("The node is not the root of a tree");
887 }
888 if (isLeaf()) {
889 return last;
890 } else if (last.isLeaf()) {
891 @SuppressWarnings("unchecked")
892 N nThis = (N)this;
893 return nThis;
894 } else {
895 N node = last.min();
896 last = node.remove();
897 return concatenate(last, node);
898 }
899 }
900
901 /**
902 * Splits the tree rooted at this node into two trees, so that the first element of the return value is the root of
903 * a tree consisting of the nodes that were before the specified node, and the second element of the return value is
904 * the root of a tree consisting of the nodes that were equal to or after the specified node. This method is
905 * destructive, meaning it does not preserve the original tree. It assumes that this node is the root and is in the
906 * same tree as splitNode. It takes O(log N) time. It is considerably more efficient than removing all of the
907 * nodes at or after splitNode and then creating a new tree from those nodes.
908 * @param The node at which to split the tree.
909 * @return An array consisting of the resulting trees.
910 */
911 public N[] split(N splitNode) {
912 // To split the tree, we accumulate a pre-split tree and a post-split tree. We walk down the tree toward the
913 // position where we are splitting. Whenever we go left, we concatenate the right subtree with the post-split
914 // tree, and whenever we go right, we concatenate the pre-split tree with the left subtree. We use the
915 // concatenation algorithm described in concatenate(Object, Object). For the pivot, we use the last node where
916 // we went left in the case of a left move, and the last node where we went right in the case of a right move.
917 //
918 // The method uses the following variables:
919 //
920 // node: The current node in our walk down the tree.
921 // first: A node on the right spine of the pre-split tree. At the beginning of each iteration, it is the black
922 // node with the same black height as "node". If the pre-split tree is empty, this is null instead.
923 // firstParent: The parent of "first". If the pre-split tree is empty, this is null. Otherwise, this is the
924 // same as first.parent, unless first.isLeaf().
925 // firstPivot: The node where we last went right, i.e. the next node to use as a pivot when concatenating with
926 // the pre-split tree.
927 // advanceFirst: Whether to set "first" to be its next black descendant at the end of the loop.
928 // last, lastParent, lastPivot, advanceLast: Analogous to "first", firstParent, firstPivot, and advanceFirst,
929 // but for the post-split tree.
930 if (parent != null) {
931 throw new IllegalArgumentException("This is not the root of a tree");
932 }
933 if (isLeaf() || splitNode.isLeaf()) {
934 throw new IllegalArgumentException("The root or the split node is a leaf");
935 }
936
937 // Create an array containing the path from the root to splitNode
938 int depth = 1;
939 N parent;
940 for (parent = splitNode; parent.parent != null; parent = parent.parent) {
941 depth++;
942 }
943 if (parent != this) {
944 throw new IllegalArgumentException("The split node does not belong to this tree");
945 }
946 RedBlackNode<?>[] path = new RedBlackNode<?>[depth];
947 for (parent = splitNode; parent != null; parent = parent.parent) {
948 depth--;
949 path[depth] = parent;
950 }
951
952 @SuppressWarnings("unchecked")
953 N node = (N)this;
954 N first = null;
955 N firstParent = null;
956 N last = null;
957 N lastParent = null;
958 N firstPivot = null;
959 N lastPivot = null;
960 while (!node.isLeaf()) {
961 boolean advanceFirst = !node.isRed && firstPivot != null;
962 boolean advanceLast = !node.isRed && lastPivot != null;
963 if ((depth + 1 < path.length && path[depth + 1] == node.left) || depth + 1 == path.length) {
964 // Left move
965 if (lastPivot == null) {
966 // The post-split tree is empty
967 last = node.right;
968 last.parent = null;
969 if (last.isRed) {
970 last.isRed = false;
971 lastParent = last;
972 last = last.left;
973 }
974 } else {
975 // Concatenate node.right and the post-split tree
976 if (node.right.isRed) {
977 node.right.isRed = false;
978 } else if (!node.isRed) {
979 lastParent = last;
980 last = last.left;
981 if (last.isRed) {
982 lastParent = last;
983 last = last.left;
984 }
985 advanceLast = false;
986 }
987 lastPivot.isRed = true;
988 lastPivot.parent = lastParent;
989 if (lastParent != null) {
990 lastParent.left = lastPivot;
991 }
992 lastPivot.left = node.right;
993 if (!lastPivot.left.isLeaf()) {
994 lastPivot.left.parent = lastPivot;
995 }
996 lastPivot.right = last;
997 if (!last.isLeaf()) {
998 last.parent = lastPivot;
999 }
1000 last = lastPivot.left;
1001 lastParent = lastPivot;
1002 lastPivot.fixInsertionWithoutGettingRoot(false);
1003 }
1004 lastPivot = node;
1005 node = node.left;
1006 } else {
1007 // Right move
1008 if (firstPivot == null) {
1009 // The pre-split tree is empty
1010 first = node.left;
1011 first.parent = null;
1012 if (first.isRed) {
1013 first.isRed = false;
1014 firstParent = first;
1015 first = first.right;
1016 }
1017 } else {
1018 // Concatenate the post-split tree and node.left
1019 if (node.left.isRed) {
1020 node.left.isRed = false;
1021 } else if (!node.isRed) {
1022 firstParent = first;
1023 first = first.right;
1024 if (first.isRed) {
1025 firstParent = first;
1026 first = first.right;
1027 }
1028 advanceFirst = false;
1029 }
1030 firstPivot.isRed = true;
1031 firstPivot.parent = firstParent;
1032 if (firstParent != null) {
1033 firstParent.right = firstPivot;
1034 }
1035 firstPivot.right = node.left;
1036 if (!firstPivot.right.isLeaf()) {
1037 firstPivot.right.parent = firstPivot;
1038 }
1039 firstPivot.left = first;
1040 if (!first.isLeaf()) {
1041 first.parent = firstPivot;
1042 }
1043 first = firstPivot.right;
1044 firstParent = firstPivot;
1045 firstPivot.fixInsertionWithoutGettingRoot(false);
1046 }
1047 firstPivot = node;
1048 node = node.right;
1049 }
1050
1051 depth++;
1052
1053 // Update "first" and "last" to be the nodes at the proper black height
1054 if (advanceFirst) {
1055 firstParent = first;
1056 first = first.right;
1057 if (first.isRed) {
1058 firstParent = first;
1059 first = first.right;
1060 }
1061 }
1062 if (advanceLast) {
1063 lastParent = last;
1064 last = last.left;
1065 if (last.isRed) {
1066 lastParent = last;
1067 last = last.left;
1068 }
1069 }
1070 }
1071
1072 // Add firstPivot to the pre-split tree
1073 N leaf = node;
1074 if (first == null) {
1075 first = leaf;
1076 } else {
1077 firstPivot.isRed = true;
1078 firstPivot.parent = firstParent;
1079 if (firstParent != null) {
1080 firstParent.right = firstPivot;
1081 }
1082 firstPivot.left = leaf;
1083 firstPivot.right = leaf;
1084 firstPivot.fixInsertionWithoutGettingRoot(false);
1085 for (first = firstPivot; first.parent != null; first = first.parent) {
1086 first.augment();
1087 }
1088 first.augment();
1089 }
1090
1091 // Add lastPivot to the post-split tree
1092 lastPivot.isRed = true;
1093 lastPivot.parent = lastParent;
1094 if (lastParent != null) {
1095 lastParent.left = lastPivot;
1096 }
1097 lastPivot.left = leaf;
1098 lastPivot.right = leaf;
1099 lastPivot.fixInsertionWithoutGettingRoot(false);
1100 for (last = lastPivot; last.parent != null; last = last.parent) {
1101 last.augment();
1102 }
1103 last.augment();
1104
1105 @SuppressWarnings("unchecked")
1106 N[] result = (N[])Array.newInstance(getClass(), 2);
1107 result[0] = first;
1108 result[1] = last;
1109 return result;
1110 }
1111
1112 /**
1113 * Returns the lowest common ancestor of this node and "other" - the node that is an ancestor of both and is not the
1114 * parent of a node that is an ancestor of both. Assumes that this is in the same tree as "other". Assumes that
1115 * neither "this" nor "other" is a leaf node. This method may return "this" or "other".
1116 *
1117 * Note that while it is possible to compute the lowest common ancestor in O(P) time, where P is the length of the
1118 * path from this node to "other", the "lca" method is not guaranteed to take O(P) time. If your application
1119 * requires this, then you should write your own lowest common ancestor method.
1120 */
1121 public N lca(N other) {
1122 if (isLeaf() || other.isLeaf()) {
1123 throw new IllegalArgumentException("One of the nodes is a leaf node");
1124 }
1125
1126 // Compute the depth of each node
1127 int depth = 0;
1128 for (N parent = this.parent; parent != null; parent = parent.parent) {
1129 depth++;
1130 }
1131 int otherDepth = 0;
1132 for (N parent = other.parent; parent != null; parent = parent.parent) {
1133 otherDepth++;
1134 }
1135
1136 // Go up to nodes of the same depth
1137 @SuppressWarnings("unchecked")
1138 N parent = (N)this;
1139 N otherParent = other;
1140 if (depth <= otherDepth) {
1141 for (int i = otherDepth; i > depth; i--) {
1142 otherParent = otherParent.parent;
1143 }
1144 } else {
1145 for (int i = depth; i > otherDepth; i--) {
1146 parent = parent.parent;
1147 }
1148 }
1149
1150 // Find the LCA
1151 while (parent != otherParent) {
1152 parent = parent.parent;
1153 otherParent = otherParent.parent;
1154 }
1155 if (parent != null) {
1156 return parent;
1157 } else {
1158 throw new IllegalArgumentException("The nodes do not belong to the same tree");
1159 }
1160 }
1161
1162 /**
1163 * Returns an integer comparing the position of this node in the tree that contains it with that of "other". Returns
1164 * a negative number if this is earlier, a positive number if this is later, and 0 if this is at the same position.
1165 * Assumes that this is in the same tree as "other". Assumes that neither "this" nor "other" is a leaf node.
1166 *
1167 * The base class's implementation takes O(log N) time. If a RedBlackNode subclass stores a value used to order the
1168 * nodes, then it could override compareTo to compare the nodes' values, which would take O(1) time.
1169 *
1170 * Note that while it is possible to compare the positions of two nodes in O(P) time, where P is the length of the
1171 * path from this node to "other", the default implementation of compareTo is not guaranteed to take O(P) time. If
1172 * your application requires this, then you should write your own comparison method.
1173 */
1174 @Override
1175 public int compareTo(N other) {
1176 if (isLeaf() || other.isLeaf()) {
1177 throw new IllegalArgumentException("One of the nodes is a leaf node");
1178 }
1179
1180 // The algorithm operates as follows: compare the depth of this node to that of "other". If the depth of
1181 // "other" is greater, keep moving up from "other" until we find the ancestor at the same depth. Then, keep
1182 // moving up from "this" and from that node until we reach the lowest common ancestor. The node that arrived
1183 // from the left child of the common ancestor is earlier. The algorithm is analogous if the depth of "other" is
1184 // not greater.
1185 if (this == other) {
1186 return 0;
1187 }
1188
1189 // Compute the depth of each node
1190 int depth = 0;
1191 RedBlackNode<N> parent;
1192 for (parent = this; parent.parent != null; parent = parent.parent) {
1193 depth++;
1194 }
1195 int otherDepth = 0;
1196 N otherParent;
1197 for (otherParent = other; otherParent.parent != null; otherParent = otherParent.parent) {
1198 otherDepth++;
1199 }
1200
1201 // Go up to nodes of the same depth
1202 if (depth < otherDepth) {
1203 otherParent = other;
1204 for (int i = otherDepth - 1; i > depth; i--) {
1205 otherParent = otherParent.parent;
1206 }
1207 if (otherParent.parent != this) {
1208 otherParent = otherParent.parent;
1209 } else if (left == otherParent) {
1210 return 1;
1211 } else {
1212 return -1;
1213 }
1214 parent = this;
1215 } else if (depth > otherDepth) {
1216 parent = this;
1217 for (int i = depth - 1; i > otherDepth; i--) {
1218 parent = parent.parent;
1219 }
1220 if (parent.parent != other) {
1221 parent = parent.parent;
1222 } else if (other.left == parent) {
1223 return -1;
1224 } else {
1225 return 1;
1226 }
1227 otherParent = other;
1228 } else {
1229 parent = this;
1230 otherParent = other;
1231 }
1232
1233 // Keep going up until we reach the lowest common ancestor
1234 while (parent.parent != otherParent.parent) {
1235 parent = parent.parent;
1236 otherParent = otherParent.parent;
1237 }
1238 if (parent.parent == null) {
1239 throw new IllegalArgumentException("The nodes do not belong to the same tree");
1240 }
1241 if (parent.parent.left == parent) {
1242 return -1;
1243 } else {
1244 return 1;
1245 }
1246 }
1247
1248 /** Throws a RuntimeException if the RedBlackNode fields of this are not correct for a leaf node. */
1249 private void assertIsValidLeaf() {
1250 if (left != null || right != null || parent != null || isRed) {
1251 throw new RuntimeException("A leaf node's \"left\", \"right\", \"parent\", or isRed field is incorrect");
1252 }
1253 }
1254
1255 /**
1256 * Throws a RuntimeException if the subtree rooted at this node does not satisfy the red-black properties, excluding
1257 * the requirement that the root be black, or it contains a repeated node other than a leaf node.
1258 * @param blackHeight The required number of black nodes in each path from this to a leaf node, including this and
1259 * the leaf node.
1260 * @param visited The nodes we have reached thus far, other than leaf nodes. This method adds the non-leaf nodes in
1261 * the subtree rooted at this node to "visited".
1262 */
1263 private void assertSubtreeIsValidRedBlack(int blackHeight, Set<Reference<N>> visited) {
1264 @SuppressWarnings("unchecked")
1265 N nThis = (N)this;
1266 if (left == null || right == null) {
1267 assertIsValidLeaf();
1268 if (blackHeight != 1) {
1269 throw new RuntimeException("Not all root-to-leaf paths have the same number of black nodes");
1270 }
1271 return;
1272 } else if (!visited.add(new Reference<N>(nThis))) {
1273 throw new RuntimeException("The tree contains a repeated non-leaf node");
1274 } else {
1275 int childBlackHeight;
1276 if (isRed) {
1277 if ((!left.isLeaf() && left.isRed) || (!right.isLeaf() && right.isRed)) {
1278 throw new RuntimeException("A red node has a red child");
1279 }
1280 childBlackHeight = blackHeight;
1281 } else if (blackHeight == 0) {
1282 throw new RuntimeException("Not all root-to-leaf paths have the same number of black nodes");
1283 } else {
1284 childBlackHeight = blackHeight - 1;
1285 }
1286
1287 if (!left.isLeaf() && left.parent != this) {
1288 throw new RuntimeException("left.parent != this");
1289 }
1290 if (!right.isLeaf() && right.parent != this) {
1291 throw new RuntimeException("right.parent != this");
1292 }
1293 RedBlackNode<N> leftNode = left;
1294 RedBlackNode<N> rightNode = right;
1295 leftNode.assertSubtreeIsValidRedBlack(childBlackHeight, visited);
1296 rightNode.assertSubtreeIsValidRedBlack(childBlackHeight, visited);
1297 }
1298 }
1299
1300 /** Calls assertNodeIsValid() on every node in the subtree rooted at this node. */
1301 private void assertNodesAreValid() {
1302 assertNodeIsValid();
1303 if (left != null) {
1304 RedBlackNode<N> leftNode = left;
1305 RedBlackNode<N> rightNode = right;
1306 leftNode.assertNodesAreValid();
1307 rightNode.assertNodesAreValid();
1308 }
1309 }
1310
1311 /**
1312 * Throws a RuntimeException if the subtree rooted at this node is not a valid red-black tree, e.g. if a red node
1313 * has a red child or it contains a non-leaf node "node" for which node.left.parent != node. (If parent != null,
1314 * it's okay if isRed is true.) This method is useful for debugging. See also assertSubtreeIsValid().
1315 */
1316 public void assertSubtreeIsValidRedBlack() {
1317 if (isLeaf()) {
1318 assertIsValidLeaf();
1319 } else {
1320 if (parent == null && isRed) {
1321 throw new RuntimeException("The root is red");
1322 }
1323
1324 // Compute the black height of the tree
1325 Set<Reference<N>> nodes = new HashSet<Reference<N>>();
1326 int blackHeight = 0;
1327 @SuppressWarnings("unchecked")
1328 N node = (N)this;
1329 while (node != null) {
1330 if (!nodes.add(new Reference<N>(node))) {
1331 throw new RuntimeException("The tree contains a repeated non-leaf node");
1332 }
1333 if (!node.isRed) {
1334 blackHeight++;
1335 }
1336 node = node.left;
1337 }
1338
1339 assertSubtreeIsValidRedBlack(blackHeight, new HashSet<Reference<N>>());
1340 }
1341 }
1342
1343 /**
1344 * Throws a RuntimeException if we detect a problem with the subtree rooted at this node, such as a red child of a
1345 * red node or a non-leaf descendant "node" for which node.left.parent != node. This method is useful for
1346 * debugging. RedBlackNode subclasses may want to override assertSubtreeIsValid() to call assertOrderIsValid.
1347 */
1348 public void assertSubtreeIsValid() {
1349 assertSubtreeIsValidRedBlack();
1350 assertNodesAreValid();
1351 }
1352
1353 /**
1354 * Throws a RuntimeException if the nodes in the subtree rooted at this node are not in the specified order or they
1355 * do not lie in the specified range. Assumes that the subtree rooted at this node is a valid binary tree, i.e. it
1356 * has no repeated nodes other than leaf nodes.
1357 * @param comparator A comparator indicating how the nodes should be ordered.
1358 * @param start The lower limit for nodes in the subtree, if any.
1359 * @param end The upper limit for nodes in the subtree, if any.
1360 */
1361 private void assertOrderIsValid(Comparator<? super N> comparator, N start, N end) {
1362 if (!isLeaf()) {
1363 @SuppressWarnings("unchecked")
1364 N nThis = (N)this;
1365 if (start != null && comparator.compare(nThis, start) < 0) {
1366 throw new RuntimeException("The nodes are not ordered correctly");
1367 }
1368 if (end != null && comparator.compare(nThis, end) > 0) {
1369 throw new RuntimeException("The nodes are not ordered correctly");
1370 }
1371 RedBlackNode<N> leftNode = left;
1372 RedBlackNode<N> rightNode = right;
1373 leftNode.assertOrderIsValid(comparator, start, nThis);
1374 rightNode.assertOrderIsValid(comparator, nThis, end);
1375 }
1376 }
1377
1378 /**
1379 * Throws a RuntimeException if the nodes in the subtree rooted at this node are not in the specified order.
1380 * Assumes that this is a valid binary tree, i.e. there are no repeated nodes other than leaf nodes. This method is
1381 * useful for debugging. RedBlackNode subclasses may want to override assertSubtreeIsValid() to call
1382 * assertOrderIsValid.
1383 * @param comparator A comparator indicating how the nodes should be ordered. If this is null, we use the nodes'
1384 * natural order, as in N.compareTo.
1385 */
1386 public void assertOrderIsValid(Comparator<? super N> comparator) {
1387 if (comparator == null) {
1388 comparator = naturalOrder();
1389 }
1390 assertOrderIsValid(comparator, null, null);
1391 }
1392}
diff --git a/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/Reference.java b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/Reference.java
new file mode 100644
index 00000000..a25c167d
--- /dev/null
+++ b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/Reference.java
@@ -0,0 +1,51 @@
1/*
2 * The MIT License (MIT)
3 *
4 * Copyright (c) 2016 btrekkie
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24package hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval;
25
26/**
27 * Wraps a value using reference equality. In other words, two references are equal only if their values are the same
28 * object instance, as in ==.
29 * @param <T> The type of value.
30 */
31class Reference<T> {
32 /** The value this wraps. */
33 private final T value;
34
35 public Reference(T value) {
36 this.value = value;
37 }
38
39 public boolean equals(Object obj) {
40 if (!(obj instanceof Reference)) {
41 return false;
42 }
43 Reference<?> reference = (Reference<?>)obj;
44 return value == reference.value;
45 }
46
47 @Override
48 public int hashCode() {
49 return System.identityHashCode(value);
50 }
51}
diff --git a/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/aggregators/IntervalAggregatorFactory.xtend b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/aggregators/IntervalAggregatorFactory.xtend
new file mode 100644
index 00000000..dee31f67
--- /dev/null
+++ b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/aggregators/IntervalAggregatorFactory.xtend
@@ -0,0 +1,50 @@
1package hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval.aggregators
2
3import hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval.Interval
4import hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval.IntervalAggregationMode
5import hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval.IntervalAggregationOperator
6import org.eclipse.viatra.query.runtime.matchers.psystem.aggregations.AggregatorType
7import org.eclipse.viatra.query.runtime.matchers.psystem.aggregations.BoundAggregator
8import org.eclipse.viatra.query.runtime.matchers.psystem.aggregations.IAggregatorFactory
9import org.eclipse.xtend.lib.annotations.FinalFieldsConstructor
10
11@AggregatorType(parameterTypes=#[Interval], returnTypes=#[Interval])
12abstract class IntervalAggregatorFactory implements IAggregatorFactory {
13 val IntervalAggregationMode mode
14
15 @FinalFieldsConstructor
16 protected new() {
17 }
18
19 override getAggregatorLogic(Class<?> domainClass) {
20 if (domainClass == Interval) {
21 new BoundAggregator(new IntervalAggregationOperator(mode), Interval, Interval)
22 } else {
23 throw new IllegalArgumentException("Unknown domain class: " + domainClass)
24 }
25 }
26}
27
28class intervalSum extends IntervalAggregatorFactory {
29 new() {
30 super(IntervalAggregationMode.SUM)
31 }
32}
33
34class intervalMin extends IntervalAggregatorFactory {
35 new() {
36 super(IntervalAggregationMode.MIN)
37 }
38}
39
40class intervalMax extends IntervalAggregatorFactory {
41 new() {
42 super(IntervalAggregationMode.MAX)
43 }
44}
45
46class intervalJoin extends IntervalAggregatorFactory {
47 new() {
48 super(IntervalAggregationMode.JOIN)
49 }
50}
diff --git a/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/aggregators/intervalHull.xtend b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/aggregators/intervalHull.xtend
new file mode 100644
index 00000000..72605f57
--- /dev/null
+++ b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/aggregators/intervalHull.xtend
@@ -0,0 +1,74 @@
1package hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval.aggregators
2
3import hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval.Interval
4import hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval.IntervalHullAggregatorOperator
5import java.math.BigDecimal
6import java.math.BigInteger
7import java.math.MathContext
8import org.eclipse.viatra.query.runtime.matchers.psystem.aggregations.AggregatorType
9import org.eclipse.viatra.query.runtime.matchers.psystem.aggregations.BoundAggregator
10import org.eclipse.viatra.query.runtime.matchers.psystem.aggregations.IAggregatorFactory
11
12@AggregatorType(parameterTypes=#[BigDecimal, BigInteger, Byte, Double, Float, Integer, Long, Short], returnTypes=#[
13 Interval, Interval, Interval, Interval, Interval, Interval, Interval, Interval])
14class intervalHull implements IAggregatorFactory {
15
16 override getAggregatorLogic(Class<?> domainClass) {
17 new BoundAggregator(getAggregationOperator(domainClass), domainClass, Interval)
18 }
19
20 private def getAggregationOperator(Class<?> domainClass) {
21 switch (domainClass) {
22 case BigDecimal:
23 new IntervalHullAggregatorOperator<BigDecimal>() {
24 override protected toBigDecimal(BigDecimal value, MathContext mc) {
25 value.round(mc)
26 }
27 }
28 case BigInteger:
29 new IntervalHullAggregatorOperator<BigInteger>() {
30 override protected toBigDecimal(BigInteger value, MathContext mc) {
31 new BigDecimal(value, mc)
32 }
33 }
34 case Byte:
35 new IntervalHullAggregatorOperator<Byte>() {
36 override protected toBigDecimal(Byte value, MathContext mc) {
37 new BigDecimal(value, mc)
38 }
39 }
40 case Double:
41 new IntervalHullAggregatorOperator<Double>() {
42 override protected toBigDecimal(Double value, MathContext mc) {
43 new BigDecimal(value, mc)
44 }
45 }
46 case Float:
47 new IntervalHullAggregatorOperator<Float>() {
48 override protected toBigDecimal(Float value, MathContext mc) {
49 new BigDecimal(value, mc)
50 }
51 }
52 case Integer:
53 new IntervalHullAggregatorOperator<Integer>() {
54 override protected toBigDecimal(Integer value, MathContext mc) {
55 new BigDecimal(value, mc)
56 }
57 }
58 case Long:
59 new IntervalHullAggregatorOperator<Long>() {
60 override protected toBigDecimal(Long value, MathContext mc) {
61 new BigDecimal(value, mc)
62 }
63 }
64 case Short:
65 new IntervalHullAggregatorOperator<Short>() {
66 override protected toBigDecimal(Short value, MathContext mc) {
67 new BigDecimal(value, mc)
68 }
69 }
70 default:
71 throw new IllegalArgumentException("Unknown domain class: " + domainClass)
72 }
73 }
74}