aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/build.properties3
-rw-r--r--Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/Interval.xtend88
-rw-r--r--Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalAggregationMode.java66
-rw-r--r--Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalAggregationOperator.xtend48
-rw-r--r--Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalRedBlackNode.xtend177
-rw-r--r--Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/RedBlackNode.java1392
-rw-r--r--Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/Reference.java51
-rw-r--r--Tests/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.tests/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/tests/interval/SumTest.xtend140
8 files changed, 1947 insertions, 18 deletions
diff --git a/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/build.properties b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/build.properties
index 585df5ce..9ffc994a 100644
--- a/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/build.properties
+++ b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/build.properties
@@ -4,6 +4,5 @@ bin.includes = META-INF/,\
4source.. = src/,\ 4source.. = src/,\
5 patterns/,\ 5 patterns/,\
6 vql-gen/,\ 6 vql-gen/,\
7 xtend-gen/,\ 7 xtend-gen/
8 src-gen/
9output.. = bin/ 8output.. = bin/
diff --git a/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/Interval.xtend b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/Interval.xtend
index 6ea96866..229656c0 100644
--- a/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/Interval.xtend
+++ b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/Interval.xtend
@@ -5,7 +5,7 @@ import java.math.MathContext
5import java.math.RoundingMode 5import java.math.RoundingMode
6import org.eclipse.xtend.lib.annotations.Data 6import org.eclipse.xtend.lib.annotations.Data
7 7
8abstract class Interval { 8abstract class Interval implements Comparable<Interval> {
9 static val PRECISION = 32 9 static val PRECISION = 32
10 static val ROUND_DOWN = new MathContext(PRECISION, RoundingMode.FLOOR) 10 static val ROUND_DOWN = new MathContext(PRECISION, RoundingMode.FLOOR)
11 static val ROUND_UP = new MathContext(PRECISION, RoundingMode.CEILING) 11 static val ROUND_UP = new MathContext(PRECISION, RoundingMode.CEILING)
@@ -24,35 +24,35 @@ abstract class Interval {
24 def mayNotEqual(Interval other) { 24 def mayNotEqual(Interval other) {
25 !mustEqual(other) 25 !mustEqual(other)
26 } 26 }
27 27
28 abstract def boolean mustBeLessThan(Interval other) 28 abstract def boolean mustBeLessThan(Interval other)
29 29
30 abstract def boolean mayBeLessThan(Interval other) 30 abstract def boolean mayBeLessThan(Interval other)
31 31
32 def mustBeLessThanOrEqual(Interval other) { 32 def mustBeLessThanOrEqual(Interval other) {
33 !mayBeGreaterThan(other) 33 !mayBeGreaterThan(other)
34 } 34 }
35 35
36 def mayBeLessThanOrEqual(Interval other) { 36 def mayBeLessThanOrEqual(Interval other) {
37 !mustBeGreaterThan(other) 37 !mustBeGreaterThan(other)
38 } 38 }
39 39
40 def mustBeGreaterThan(Interval other) { 40 def mustBeGreaterThan(Interval other) {
41 other.mustBeLessThan(this) 41 other.mustBeLessThan(this)
42 } 42 }
43 43
44 def mayBeGreaterThan(Interval other) { 44 def mayBeGreaterThan(Interval other) {
45 other.mayBeLessThan(this) 45 other.mayBeLessThan(this)
46 } 46 }
47 47
48 def mustBeGreaterThanOrEqual(Interval other) { 48 def mustBeGreaterThanOrEqual(Interval other) {
49 other.mustBeLessThanOrEqual(this) 49 other.mustBeLessThanOrEqual(this)
50 } 50 }
51 51
52 def mayBeGreaterThanOrEqual(Interval other) { 52 def mayBeGreaterThanOrEqual(Interval other) {
53 other.mayBeLessThanOrEqual(this) 53 other.mayBeLessThanOrEqual(this)
54 } 54 }
55 55
56 abstract def Interval join(Interval other) 56 abstract def Interval join(Interval other)
57 57
58 def operator_plus() { 58 def operator_plus() {
@@ -65,6 +65,8 @@ abstract class Interval {
65 65
66 abstract def Interval operator_minus(Interval other) 66 abstract def Interval operator_minus(Interval other)
67 67
68 abstract def Interval operator_multiply(int count)
69
68 abstract def Interval operator_multiply(Interval other) 70 abstract def Interval operator_multiply(Interval other)
69 71
70 abstract def Interval operator_divide(Interval other) 72 abstract def Interval operator_divide(Interval other)
@@ -77,15 +79,15 @@ abstract class Interval {
77 override mayEqual(Interval other) { 79 override mayEqual(Interval other) {
78 false 80 false
79 } 81 }
80 82
81 override mustBeLessThan(Interval other) { 83 override mustBeLessThan(Interval other) {
82 true 84 true
83 } 85 }
84 86
85 override mayBeLessThan(Interval other) { 87 override mayBeLessThan(Interval other) {
86 false 88 false
87 } 89 }
88 90
89 override join(Interval other) { 91 override join(Interval other) {
90 other 92 other
91 } 93 }
@@ -102,6 +104,10 @@ abstract class Interval {
102 EMPTY 104 EMPTY
103 } 105 }
104 106
107 override operator_multiply(int count) {
108 EMPTY
109 }
110
105 override operator_multiply(Interval other) { 111 override operator_multiply(Interval other) {
106 EMPTY 112 EMPTY
107 } 113 }
@@ -113,6 +119,15 @@ abstract class Interval {
113 override toString() { 119 override toString() {
114 "∅" 120 "∅"
115 } 121 }
122
123 override compareTo(Interval o) {
124 if (o == EMPTY) {
125 0
126 } else {
127 -1
128 }
129 }
130
116 } 131 }
117 132
118 public static val Interval ZERO = new NonEmpty(BigDecimal.ZERO, BigDecimal.ZERO) 133 public static val Interval ZERO = new NonEmpty(BigDecimal.ZERO, BigDecimal.ZERO)
@@ -170,7 +185,7 @@ abstract class Interval {
170 false 185 false
171 } 186 }
172 } 187 }
173 188
174 override mustBeLessThan(Interval other) { 189 override mustBeLessThan(Interval other) {
175 switch (other) { 190 switch (other) {
176 case EMPTY: true 191 case EMPTY: true
@@ -178,7 +193,7 @@ abstract class Interval {
178 default: throw new IllegalArgumentException("") 193 default: throw new IllegalArgumentException("")
179 } 194 }
180 } 195 }
181 196
182 override mayBeLessThan(Interval other) { 197 override mayBeLessThan(Interval other) {
183 if (other instanceof NonEmpty) { 198 if (other instanceof NonEmpty) {
184 lower === null || other.upper === null || lower < other.upper 199 lower === null || other.upper === null || lower < other.upper
@@ -186,7 +201,7 @@ abstract class Interval {
186 false 201 false
187 } 202 }
188 } 203 }
189 204
190 override join(Interval other) { 205 override join(Interval other) {
191 switch (other) { 206 switch (other) {
192 case EMPTY: this 207 case EMPTY: this
@@ -245,6 +260,14 @@ abstract class Interval {
245 } 260 }
246 } 261 }
247 262
263 override operator_multiply(int count) {
264 val bigCount = new BigDecimal(count)
265 new NonEmpty(
266 lower.tryMultiply(bigCount, ROUND_DOWN),
267 upper.tryMultiply(bigCount, ROUND_UP)
268 )
269 }
270
248 override operator_multiply(Interval other) { 271 override operator_multiply(Interval other) {
249 switch (other) { 272 switch (other) {
250 case EMPTY: EMPTY 273 case EMPTY: EMPTY
@@ -431,5 +454,38 @@ abstract class Interval {
431 override toString() { 454 override toString() {
432 '''«IF lower === null»(-∞«ELSE»[«lower»«ENDIF», «IF upper === null»∞)«ELSE»«upper»]«ENDIF»''' 455 '''«IF lower === null»(-∞«ELSE»[«lower»«ENDIF», «IF upper === null»∞)«ELSE»«upper»]«ENDIF»'''
433 } 456 }
457
458 override compareTo(Interval o) {
459 switch (o) {
460 case EMPTY: 1
461 NonEmpty: compareTo(o)
462 default: throw new IllegalArgumentException("")
463 }
464 }
465
466 def compareTo(NonEmpty o) {
467 if (lower === null) {
468 if (o.lower !== null) {
469 return -1
470 }
471 } else if (o.lower === null) { // lower !== null
472 return 1
473 } else { // both lower and o.lower are finite
474 val lowerDifference = lower.compareTo(o.lower)
475 if (lowerDifference != 0) {
476 return lowerDifference
477 }
478 }
479 if (upper === null) {
480 if (o.upper === null) {
481 return 0
482 } else {
483 return 1
484 }
485 } else if (o.upper === null) { // upper !== null
486 return -1
487 }
488 upper.compareTo(o.upper)
489 }
434 } 490 }
435} 491}
diff --git a/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalAggregationMode.java b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalAggregationMode.java
new file mode 100644
index 00000000..f5bd2efc
--- /dev/null
+++ b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalAggregationMode.java
@@ -0,0 +1,66 @@
1package hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval;
2
3import java.util.function.BinaryOperator;
4
5public enum IntervalAggregationMode implements BinaryOperator<Interval> {
6 SUM("intervalSum", "Sum a set of intervals") {
7 @Override
8 public IntervalRedBlackNode createNode(Interval interval) {
9 return new IntervalRedBlackNode(interval) {
10 public boolean isMultiplicitySensitive() {
11 return true;
12 }
13
14 public Interval multiply(Interval interval, int count) {
15 return interval.operator_multiply(count);
16 };
17
18 @Override
19 public Interval op(Interval left, Interval right) {
20 return left.operator_plus(right);
21 }
22 };
23 }
24 },
25
26 JOIN("intervalJoin", "Calculate the smallest interval containing all the intervals in a set") {
27 @Override
28 public IntervalRedBlackNode createNode(Interval interval) {
29 return new IntervalRedBlackNode(interval) {
30 @Override
31 public Interval op(Interval left, Interval right) {
32 return left.join(right);
33 }
34 };
35 }
36 };
37
38 private final String modeName;
39 private final String description;
40 private final IntervalRedBlackNode empty;
41
42 IntervalAggregationMode(String modeName, String description) {
43 this.modeName = modeName;
44 this.description = description;
45 empty = createNode(null);
46 }
47
48 public String getModeName() {
49 return modeName;
50 }
51
52 public String getDescription() {
53 return description;
54 }
55
56 public IntervalRedBlackNode getEmpty() {
57 return empty;
58 }
59
60 @Override
61 public Interval apply(Interval left, Interval right) {
62 return empty.op(left, right);
63 }
64
65 public abstract IntervalRedBlackNode createNode(Interval interval);
66}
diff --git a/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalAggregationOperator.xtend b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalAggregationOperator.xtend
new file mode 100644
index 00000000..940c71bb
--- /dev/null
+++ b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalAggregationOperator.xtend
@@ -0,0 +1,48 @@
1package hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval
2
3import java.util.stream.Stream
4import org.eclipse.viatra.query.runtime.matchers.psystem.aggregations.IMultisetAggregationOperator
5import org.eclipse.xtend.lib.annotations.Accessors
6import org.eclipse.xtend.lib.annotations.FinalFieldsConstructor
7
8@FinalFieldsConstructor
9class IntervalAggregationOperator implements IMultisetAggregationOperator<Interval, IntervalRedBlackNode, Interval> {
10 @Accessors val IntervalAggregationMode mode
11
12 override getName() {
13 mode.modeName
14 }
15
16 override getShortDescription() {
17 mode.description
18 }
19
20 override createNeutral() {
21 mode.empty
22 }
23
24 override isNeutral(IntervalRedBlackNode result) {
25 result.leaf
26 }
27
28 override update(IntervalRedBlackNode oldResult, Interval updateValue, boolean isInsertion) {
29 if (isInsertion) {
30 val newNode = mode.createNode(updateValue)
31 oldResult.add(newNode)
32 } else {
33 oldResult.remove(updateValue)
34 }
35 }
36
37 override getAggregate(IntervalRedBlackNode result) {
38 if (result.leaf) {
39 null
40 } else {
41 result.result
42 }
43 }
44
45 override aggregateStream(Stream<Interval> stream) {
46 stream.reduce(mode).orElse(null)
47 }
48}
diff --git a/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalRedBlackNode.xtend b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalRedBlackNode.xtend
new file mode 100644
index 00000000..3aa575bc
--- /dev/null
+++ b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/IntervalRedBlackNode.xtend
@@ -0,0 +1,177 @@
1package hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval
2
3abstract class IntervalRedBlackNode extends RedBlackNode<IntervalRedBlackNode> {
4 public val Interval interval
5 public var int count = 1
6 public var Interval result
7
8 new(Interval interval) {
9 this.interval = interval
10 }
11
12 def boolean isMultiplicitySensitive() {
13 false
14 }
15
16 def Interval multiply(Interval interval, int count) {
17 interval
18 }
19
20 abstract def Interval op(Interval left, Interval right)
21
22 override augment() {
23 val value = calcualteAugmentation()
24 if (result == value) {
25 false
26 } else {
27 result = value
28 true
29 }
30 }
31
32 private def calcualteAugmentation() {
33 var value = multiply(interval, count)
34 if (!left.leaf) {
35 value = op(value, left.result)
36 }
37 if (!right.leaf) {
38 value = op(value, right.result)
39 }
40 value
41 }
42
43 override assertNodeIsValid() {
44 super.assertNodeIsValid()
45 if (leaf) {
46 return
47 }
48 if (count <= 0) {
49 throw new IllegalStateException("Node with nonpositive count")
50 }
51 val value = calcualteAugmentation()
52 if (result != value) {
53 throw new IllegalStateException("Node with invalid augmentation: " + result + " != " + value)
54 }
55 }
56
57 override assertSubtreeIsValid() {
58 super.assertSubtreeIsValid()
59 assertNodeIsValid()
60 }
61
62 override compareTo(IntervalRedBlackNode other) {
63 if (leaf || other.leaf) {
64 throw new IllegalArgumentException("One of the nodes is a leaf node")
65 }
66 interval.compareTo(other.interval)
67 }
68
69 def add(IntervalRedBlackNode newNode) {
70 if (parent !== null) {
71 throw new IllegalArgumentException("This is not the root of a tree")
72 }
73 if (leaf) {
74 newNode.isRed = false
75 newNode.left = this
76 newNode.right = this
77 newNode.parent = null
78 newNode.augment
79 return newNode
80 }
81 val modifiedNode = addWithoutFixup(newNode)
82 if (modifiedNode === newNode) {
83 // Must augment here, because fixInsertion() might call augment()
84 // on a node repeatedly, which might lose the change notification the
85 // second time it is called, and the augmentation will fail to
86 // reach the root.
87 modifiedNode.augmentRecursively
88 modifiedNode.isRed = true
89 return modifiedNode.fixInsertion
90 }
91 if (multiplicitySensitive) {
92 modifiedNode.augmentRecursively
93 }
94 this
95 }
96
97 private def addWithoutFixup(IntervalRedBlackNode newNode) {
98 var node = this
99 while (!node.leaf) {
100 val comparison = node.interval.compareTo(newNode.interval)
101 if (comparison < 0) {
102 if (node.left.leaf) {
103 newNode.left = node.left
104 newNode.right = node.left
105 node.left = newNode
106 newNode.parent = node
107 return newNode
108 } else {
109 node = node.left
110 }
111 } else if (comparison > 0) {
112 if (node.right.leaf) {
113 newNode.left = node.right
114 newNode.right = node.right
115 node.right = newNode
116 newNode.parent = node
117 return newNode
118 } else {
119 node = node.right
120 }
121 } else { // comparison == 0
122 newNode.parent = null
123 node.count++
124 return node
125 }
126 }
127 throw new IllegalStateException("Reached leaf node while searching for insertion point")
128 }
129
130 private def augmentRecursively() {
131 for (var node = this; node !== null; node = node.parent) {
132 if (!node.augment) {
133 return
134 }
135 }
136 }
137
138 def remove(Interval interval) {
139 val node = find(interval)
140 node.count--
141 if (node.count == 0) {
142 return node.remove
143 }
144 if (multiplicitySensitive) {
145 node.augmentRecursively
146 }
147 this
148 }
149
150 private def find(Interval interval) {
151 var node = this
152 while (!node.leaf) {
153 val comparison = node.interval.compareTo(interval)
154 if (comparison < 0) {
155 node = node.left
156 } else if (comparison > 0) {
157 node = node.right
158 } else { // comparison == 0
159 return node
160 }
161 }
162 throw new IllegalStateException("Reached leaf node while searching for interval to remove")
163 }
164
165 override toString() {
166 if (leaf) {
167 "L"
168 } else {
169 '''
170 «IF isRed»R«ELSE»B«ENDIF» «count»«interval» : «result»
171 «left»
172 «right»
173 '''
174 }
175 }
176
177}
diff --git a/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/RedBlackNode.java b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/RedBlackNode.java
new file mode 100644
index 00000000..8c40816b
--- /dev/null
+++ b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/RedBlackNode.java
@@ -0,0 +1,1392 @@
1/*
2 * The MIT License (MIT)
3 *
4 * Copyright (c) 2016 btrekkie
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24package hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval;
25
26import java.lang.reflect.Array;
27import java.util.Collection;
28import java.util.Comparator;
29import java.util.HashSet;
30import java.util.Iterator;
31import java.util.Set;
32
33/**
34 * A node in a red-black tree ( https://en.wikipedia.org/wiki/Red%E2%80%93black_tree ). Compared to a class like Java's
35 * TreeMap, RedBlackNode is a low-level data structure. The internals of a node are exposed as public fields, allowing
36 * clients to directly observe and manipulate the structure of the tree. This gives clients flexibility, although it
37 * also enables them to violate the red-black or BST properties. The RedBlackNode class provides methods for performing
38 * various standard operations, such as insertion and removal.
39 *
40 * Unlike most implementations of binary search trees, RedBlackNode supports arbitrary augmentation. By subclassing
41 * RedBlackNode, clients can add arbitrary data and augmentation information to each node. For example, if we were to
42 * use a RedBlackNode subclass to implement a sorted set, the subclass would have a field storing an element in the set.
43 * If we wanted to keep track of the number of non-leaf nodes in each subtree, we would store this as a "size" field and
44 * override augment() to update this field. All RedBlackNode methods (such as "insert" and remove()) call augment() as
45 * necessary to correctly maintain the augmentation information, unless otherwise indicated.
46 *
47 * The values of the tree are stored in the non-leaf nodes. RedBlackNode does not support use cases where values must be
48 * stored in the leaf nodes. It is recommended that all of the leaf nodes in a given tree be the same (black)
49 * RedBlackNode instance, to save space. The root of an empty tree is a leaf node, as opposed to null.
50 *
51 * For reference, a red-black tree is a binary search tree satisfying the following properties:
52 *
53 * - Every node is colored red or black.
54 * - The leaf nodes, which are dummy nodes that do not store any values, are colored black.
55 * - The root is black.
56 * - Both children of each red node are black.
57 * - Every path from the root to a leaf contains the same number of black nodes.
58 *
59 * @param <N> The type of node in the tree. For example, we might have
60 * "class FooNode<T> extends RedBlackNode<FooNode<T>>".
61 * @author Bill Jacobs
62 */
63public abstract class RedBlackNode<N extends RedBlackNode<N>> implements Comparable<N> {
64 /** A Comparator that compares Comparable elements using their natural order. */
65 private static final Comparator<Comparable<Object>> NATURAL_ORDER = new Comparator<Comparable<Object>>() {
66 @Override
67 public int compare(Comparable<Object> value1, Comparable<Object> value2) {
68 return value1.compareTo(value2);
69 }
70 };
71
72 /** The parent of this node, if any. "parent" is null if this is a leaf node. */
73 public N parent;
74
75 /** The left child of this node. "left" is null if this is a leaf node. */
76 public N left;
77
78 /** The right child of this node. "right" is null if this is a leaf node. */
79 public N right;
80
81 /** Whether the node is colored red, as opposed to black. */
82 public boolean isRed;
83
84 /**
85 * Sets any augmentation information about the subtree rooted at this node that is stored in this node. For
86 * example, if we augment each node by subtree size (the number of non-leaf nodes in the subtree), this method would
87 * set the size field of this node to be equal to the size field of the left child plus the size field of the right
88 * child plus one.
89 *
90 * "Augmentation information" is information that we can compute about a subtree rooted at some node, preferably
91 * based only on the augmentation information in the node's two children and the information in the node. Examples
92 * of augmentation information are the sum of the values in a subtree and the number of non-leaf nodes in a subtree.
93 * Augmentation information may not depend on the colors of the nodes.
94 *
95 * This method returns whether the augmentation information in any of the ancestors of this node might have been
96 * affected by changes in this subtree since the last call to augment(). In the usual case, where the augmentation
97 * information depends only on the information in this node and the augmentation information in its immediate
98 * children, this is equivalent to whether the augmentation information changed as a result of this call to
99 * augment(). For example, in the case of subtree size, this returns whether the value of the size field prior to
100 * calling augment() differed from the size field of the left child plus the size field of the right child plus one.
101 * False positives are permitted. The return value is unspecified if we have not called augment() on this node
102 * before.
103 *
104 * This method may assume that this is not a leaf node. It may not assume that the augmentation information stored
105 * in any of the tree's nodes is correct. However, if the augmentation information stored in all of the node's
106 * descendants is correct, then the augmentation information stored in this node must be correct after calling
107 * augment().
108 */
109 public boolean augment() {
110 return false;
111 }
112
113 /**
114 * Throws a RuntimeException if we detect that this node locally violates any invariants specific to this subclass
115 * of RedBlackNode. For example, if this stores the size of the subtree rooted at this node, this should throw a
116 * RuntimeException if the size field of this is not equal to the size field of the left child plus the size field
117 * of the right child plus one. Note that we may call this on a leaf node.
118 *
119 * assertSubtreeIsValid() calls assertNodeIsValid() on each node, or at least starts to do so until it detects a
120 * problem. assertNodeIsValid() should assume the node is in a tree that satisfies all properties common to all
121 * red-black trees, as assertSubtreeIsValid() is responsible for such checks. assertNodeIsValid() should be
122 * "downward-looking", i.e. it should ignore any information in "parent", and it should be "local", i.e. it should
123 * only check a constant number of descendants. To include "global" checks, such as verifying the BST property
124 * concerning ordering, override assertSubtreeIsValid(). assertOrderIsValid is useful for checking the BST
125 * property.
126 */
127 public void assertNodeIsValid() {
128
129 }
130
131 /** Returns whether this is a leaf node. */
132 public boolean isLeaf() {
133 return left == null;
134 }
135
136 /** Returns the root of the tree that contains this node. */
137 public N root() {
138 @SuppressWarnings("unchecked")
139 N node = (N)this;
140 while (node.parent != null) {
141 node = node.parent;
142 }
143 return node;
144 }
145
146 /** Returns the first node in the subtree rooted at this node, if any. */
147 public N min() {
148 if (isLeaf()) {
149 return null;
150 }
151 @SuppressWarnings("unchecked")
152 N node = (N)this;
153 while (!node.left.isLeaf()) {
154 node = node.left;
155 }
156 return node;
157 }
158
159 /** Returns the last node in the subtree rooted at this node, if any. */
160 public N max() {
161 if (isLeaf()) {
162 return null;
163 }
164 @SuppressWarnings("unchecked")
165 N node = (N)this;
166 while (!node.right.isLeaf()) {
167 node = node.right;
168 }
169 return node;
170 }
171
172 /** Returns the node immediately before this in the tree that contains this node, if any. */
173 public N predecessor() {
174 if (!left.isLeaf()) {
175 N node;
176 for (node = left; !node.right.isLeaf(); node = node.right);
177 return node;
178 } else if (parent == null) {
179 return null;
180 } else {
181 @SuppressWarnings("unchecked")
182 N node = (N)this;
183 while (node.parent != null && node.parent.left == node) {
184 node = node.parent;
185 }
186 return node.parent;
187 }
188 }
189
190 /** Returns the node immediately after this in the tree that contains this node, if any. */
191 public N successor() {
192 if (!right.isLeaf()) {
193 N node;
194 for (node = right; !node.left.isLeaf(); node = node.left);
195 return node;
196 } else if (parent == null) {
197 return null;
198 } else {
199 @SuppressWarnings("unchecked")
200 N node = (N)this;
201 while (node.parent != null && node.parent.right == node) {
202 node = node.parent;
203 }
204 return node.parent;
205 }
206 }
207
208 /**
209 * Performs a left rotation about this node. This method assumes that !isLeaf() && !right.isLeaf(). It calls
210 * augment() on this node and on its resulting parent. However, it does not call augment() on any of the resulting
211 * parent's ancestors, because that is normally the responsibility of the caller.
212 * @return The return value from calling augment() on the resulting parent.
213 */
214 public boolean rotateLeft() {
215 if (isLeaf() || right.isLeaf()) {
216 throw new IllegalArgumentException("The node or its right child is a leaf");
217 }
218 N newParent = right;
219 right = newParent.left;
220 @SuppressWarnings("unchecked")
221 N nThis = (N)this;
222 if (!right.isLeaf()) {
223 right.parent = nThis;
224 }
225 newParent.parent = parent;
226 parent = newParent;
227 newParent.left = nThis;
228 if (newParent.parent != null) {
229 if (newParent.parent.left == this) {
230 newParent.parent.left = newParent;
231 } else {
232 newParent.parent.right = newParent;
233 }
234 }
235 augment();
236 return newParent.augment();
237 }
238
239 /**
240 * Performs a right rotation about this node. This method assumes that !isLeaf() && !left.isLeaf(). It calls
241 * augment() on this node and on its resulting parent. However, it does not call augment() on any of the resulting
242 * parent's ancestors, because that is normally the responsibility of the caller.
243 * @return The return value from calling augment() on the resulting parent.
244 */
245 public boolean rotateRight() {
246 if (isLeaf() || left.isLeaf()) {
247 throw new IllegalArgumentException("The node or its left child is a leaf");
248 }
249 N newParent = left;
250 left = newParent.right;
251 @SuppressWarnings("unchecked")
252 N nThis = (N)this;
253 if (!left.isLeaf()) {
254 left.parent = nThis;
255 }
256 newParent.parent = parent;
257 parent = newParent;
258 newParent.right = nThis;
259 if (newParent.parent != null) {
260 if (newParent.parent.left == this) {
261 newParent.parent.left = newParent;
262 } else {
263 newParent.parent.right = newParent;
264 }
265 }
266 augment();
267 return newParent.augment();
268 }
269
270 /**
271 * Performs red-black insertion fixup. To be more precise, this fixes a tree that satisfies all of the requirements
272 * of red-black trees, except that this may be a red child of a red node, and if this is the root, the root may be
273 * red. node.isRed must initially be true. This method assumes that this is not a leaf node. The method performs
274 * any rotations by calling rotateLeft() and rotateRight(). This method is more efficient than fixInsertion if
275 * "augment" is false or augment() might return false.
276 * @param augment Whether to set the augmentation information for "node" and its ancestors, by calling augment().
277 */
278 public void fixInsertionWithoutGettingRoot(boolean augment) {
279 if (!isRed) {
280 throw new IllegalArgumentException("The node must be red");
281 }
282 boolean changed = augment;
283 if (augment) {
284 augment();
285 }
286
287 RedBlackNode<N> node = this;
288 while (node.parent != null && node.parent.isRed) {
289 N parent = node.parent;
290 N grandparent = parent.parent;
291 if (grandparent.left.isRed && grandparent.right.isRed) {
292 grandparent.left.isRed = false;
293 grandparent.right.isRed = false;
294 grandparent.isRed = true;
295
296 if (changed) {
297 changed = parent.augment();
298 if (changed) {
299 changed = grandparent.augment();
300 }
301 }
302 node = grandparent;
303 } else {
304 if (parent.left == node) {
305 if (grandparent.right == parent) {
306 parent.rotateRight();
307 node = parent;
308 parent = node.parent;
309 }
310 } else if (grandparent.left == parent) {
311 parent.rotateLeft();
312 node = parent;
313 parent = node.parent;
314 }
315
316 if (parent.left == node) {
317 boolean grandparentChanged = grandparent.rotateRight();
318 if (augment) {
319 changed = grandparentChanged;
320 }
321 } else {
322 boolean grandparentChanged = grandparent.rotateLeft();
323 if (augment) {
324 changed = grandparentChanged;
325 }
326 }
327
328 parent.isRed = false;
329 grandparent.isRed = true;
330 node = parent;
331 break;
332 }
333 }
334
335 if (node.parent == null) {
336 node.isRed = false;
337 }
338 if (changed) {
339 for (node = node.parent; node != null; node = node.parent) {
340 if (!node.augment()) {
341 break;
342 }
343 }
344 }
345 }
346
347 /**
348 * Performs red-black insertion fixup. To be more precise, this fixes a tree that satisfies all of the requirements
349 * of red-black trees, except that this may be a red child of a red node, and if this is the root, the root may be
350 * red. node.isRed must initially be true. This method assumes that this is not a leaf node. The method performs
351 * any rotations by calling rotateLeft() and rotateRight(). This method is more efficient than fixInsertion() if
352 * augment() might return false.
353 */
354 public void fixInsertionWithoutGettingRoot() {
355 fixInsertionWithoutGettingRoot(true);
356 }
357
358 /**
359 * Performs red-black insertion fixup. To be more precise, this fixes a tree that satisfies all of the requirements
360 * of red-black trees, except that this may be a red child of a red node, and if this is the root, the root may be
361 * red. node.isRed must initially be true. This method assumes that this is not a leaf node. The method performs
362 * any rotations by calling rotateLeft() and rotateRight().
363 * @param augment Whether to set the augmentation information for "node" and its ancestors, by calling augment().
364 * @return The root of the resulting tree.
365 */
366 public N fixInsertion(boolean augment) {
367 fixInsertionWithoutGettingRoot(augment);
368 return root();
369 }
370
371 /**
372 * Performs red-black insertion fixup. To be more precise, this fixes a tree that satisfies all of the requirements
373 * of red-black trees, except that this may be a red child of a red node, and if this is the root, the root may be
374 * red. node.isRed must initially be true. This method assumes that this is not a leaf node. The method performs
375 * any rotations by calling rotateLeft() and rotateRight().
376 * @return The root of the resulting tree.
377 */
378 public N fixInsertion() {
379 fixInsertionWithoutGettingRoot(true);
380 return root();
381 }
382
383 /** Returns a Comparator that compares instances of N using their natural order, as in N.compareTo. */
384 @SuppressWarnings({"rawtypes", "unchecked"})
385 private Comparator<N> naturalOrder() {
386 Comparator comparator = (Comparator)NATURAL_ORDER;
387 return (Comparator<N>)comparator;
388 }
389
390 /**
391 * Inserts the specified node into the tree rooted at this node. Assumes this is the root. We treat newNode as a
392 * solitary node that does not belong to any tree, and we ignore its initial "parent", "left", "right", and isRed
393 * fields.
394 *
395 * If it is not efficient or convenient to find the location for a node using a Comparator, then you should manually
396 * add the node to the appropriate location, color it red, and call fixInsertion().
397 *
398 * @param newNode The node to insert.
399 * @param allowDuplicates Whether to insert newNode if there is an equal node in the tree. To check whether we
400 * inserted newNode, check whether newNode.parent is null and the return value differs from newNode.
401 * @param comparator A comparator indicating where to put the node. If this is null, we use the nodes' natural
402 * order, as in N.compareTo. If you are passing null, then you must override the compareTo method, because the
403 * default implementation requires the nodes to already be in the same tree.
404 * @return The root of the resulting tree.
405 */
406 public N insert(N newNode, boolean allowDuplicates, Comparator<? super N> comparator) {
407 if (parent != null) {
408 throw new IllegalArgumentException("This is not the root of a tree");
409 }
410 @SuppressWarnings("unchecked")
411 N nThis = (N)this;
412 if (isLeaf()) {
413 newNode.isRed = false;
414 newNode.left = nThis;
415 newNode.right = nThis;
416 newNode.parent = null;
417 newNode.augment();
418 return newNode;
419 }
420 if (comparator == null) {
421 comparator = naturalOrder();
422 }
423
424 N node = nThis;
425 int comparison;
426 while (true) {
427 comparison = comparator.compare(newNode, node);
428 if (comparison < 0) {
429 if (!node.left.isLeaf()) {
430 node = node.left;
431 } else {
432 newNode.left = node.left;
433 newNode.right = node.left;
434 node.left = newNode;
435 newNode.parent = node;
436 break;
437 }
438 } else if (comparison > 0 || allowDuplicates) {
439 if (!node.right.isLeaf()) {
440 node = node.right;
441 } else {
442 newNode.left = node.right;
443 newNode.right = node.right;
444 node.right = newNode;
445 newNode.parent = node;
446 break;
447 }
448 } else {
449 newNode.parent = null;
450 return nThis;
451 }
452 }
453 newNode.isRed = true;
454 return newNode.fixInsertion();
455 }
456
457 /**
458 * Moves this node to its successor's former position in the tree and vice versa, i.e. sets the "left", "right",
459 * "parent", and isRed fields of each. This method assumes that this is not a leaf node.
460 * @return The node with which we swapped.
461 */
462 private N swapWithSuccessor() {
463 N replacement = successor();
464 boolean oldReplacementIsRed = replacement.isRed;
465 N oldReplacementLeft = replacement.left;
466 N oldReplacementRight = replacement.right;
467 N oldReplacementParent = replacement.parent;
468
469 replacement.isRed = isRed;
470 replacement.left = left;
471 replacement.right = right;
472 replacement.parent = parent;
473 if (parent != null) {
474 if (parent.left == this) {
475 parent.left = replacement;
476 } else {
477 parent.right = replacement;
478 }
479 }
480
481 @SuppressWarnings("unchecked")
482 N nThis = (N)this;
483 isRed = oldReplacementIsRed;
484 left = oldReplacementLeft;
485 right = oldReplacementRight;
486 if (oldReplacementParent == this) {
487 parent = replacement;
488 parent.right = nThis;
489 } else {
490 parent = oldReplacementParent;
491 parent.left = nThis;
492 }
493
494 replacement.right.parent = replacement;
495 if (!replacement.left.isLeaf()) {
496 replacement.left.parent = replacement;
497 }
498 if (!right.isLeaf()) {
499 right.parent = nThis;
500 }
501 return replacement;
502 }
503
504 /**
505 * Performs red-black deletion fixup. To be more precise, this fixes a tree that satisfies all of the requirements
506 * of red-black trees, except that all paths from the root to a leaf that pass through the sibling of this node have
507 * one fewer black node than all other root-to-leaf paths. This method assumes that this is not a leaf node.
508 */
509 private void fixSiblingDeletion() {
510 RedBlackNode<N> sibling = this;
511 boolean changed = true;
512 boolean haveAugmentedParent = false;
513 boolean haveAugmentedGrandparent = false;
514 while (true) {
515 N parent = sibling.parent;
516 if (sibling.isRed) {
517 parent.isRed = true;
518 sibling.isRed = false;
519 if (parent.left == sibling) {
520 changed = parent.rotateRight();
521 sibling = parent.left;
522 } else {
523 changed = parent.rotateLeft();
524 sibling = parent.right;
525 }
526 haveAugmentedParent = true;
527 haveAugmentedGrandparent = true;
528 } else if (!sibling.left.isRed && !sibling.right.isRed) {
529 sibling.isRed = true;
530 if (parent.isRed) {
531 parent.isRed = false;
532 break;
533 } else {
534 if (changed && !haveAugmentedParent) {
535 changed = parent.augment();
536 }
537 N grandparent = parent.parent;
538 if (grandparent == null) {
539 break;
540 } else if (grandparent.left == parent) {
541 sibling = grandparent.right;
542 } else {
543 sibling = grandparent.left;
544 }
545 haveAugmentedParent = haveAugmentedGrandparent;
546 haveAugmentedGrandparent = false;
547 }
548 } else {
549 if (sibling == parent.left) {
550 if (!sibling.left.isRed) {
551 sibling.rotateLeft();
552 sibling = sibling.parent;
553 }
554 } else if (!sibling.right.isRed) {
555 sibling.rotateRight();
556 sibling = sibling.parent;
557 }
558 sibling.isRed = parent.isRed;
559 parent.isRed = false;
560 if (sibling == parent.left) {
561 sibling.left.isRed = false;
562 changed = parent.rotateRight();
563 } else {
564 sibling.right.isRed = false;
565 changed = parent.rotateLeft();
566 }
567 haveAugmentedParent = haveAugmentedGrandparent;
568 haveAugmentedGrandparent = false;
569 break;
570 }
571 }
572
573 // Update augmentation info
574 N parent = sibling.parent;
575 if (changed && parent != null) {
576 if (!haveAugmentedParent) {
577 changed = parent.augment();
578 }
579 if (changed && parent.parent != null) {
580 parent = parent.parent;
581 if (!haveAugmentedGrandparent) {
582 changed = parent.augment();
583 }
584 if (changed) {
585 for (parent = parent.parent; parent != null; parent = parent.parent) {
586 if (!parent.augment()) {
587 break;
588 }
589 }
590 }
591 }
592 }
593 }
594
595 /**
596 * Removes this node from the tree that contains it. The effect of this method on the fields of this node is
597 * unspecified. This method assumes that this is not a leaf node. This method is more efficient than remove() if
598 * augment() might return false.
599 *
600 * If the node has two children, we begin by moving the node's successor to its former position, by changing the
601 * successor's "left", "right", "parent", and isRed fields.
602 */
603 public void removeWithoutGettingRoot() {
604 if (isLeaf()) {
605 throw new IllegalArgumentException("Attempted to remove a leaf node");
606 }
607 N replacement;
608 if (left.isLeaf() || right.isLeaf()) {
609 replacement = null;
610 } else {
611 replacement = swapWithSuccessor();
612 }
613
614 N child;
615 if (!left.isLeaf()) {
616 child = left;
617 } else if (!right.isLeaf()) {
618 child = right;
619 } else {
620 child = null;
621 }
622
623 if (child != null) {
624 // Replace this node with its child
625 child.parent = parent;
626 if (parent != null) {
627 if (parent.left == this) {
628 parent.left = child;
629 } else {
630 parent.right = child;
631 }
632 }
633 child.isRed = false;
634
635 if (child.parent != null) {
636 N parent;
637 for (parent = child.parent; parent != null; parent = parent.parent) {
638 if (!parent.augment()) {
639 break;
640 }
641 }
642 }
643 } else if (parent != null) {
644 // Replace this node with a leaf node
645 N leaf = left;
646 N parent = this.parent;
647 N sibling;
648 if (parent.left == this) {
649 parent.left = leaf;
650 sibling = parent.right;
651 } else {
652 parent.right = leaf;
653 sibling = parent.left;
654 }
655
656 if (!isRed) {
657 RedBlackNode<N> siblingNode = sibling;
658 siblingNode.fixSiblingDeletion();
659 } else {
660 while (parent != null) {
661 if (!parent.augment()) {
662 break;
663 }
664 parent = parent.parent;
665 }
666 }
667 }
668
669 if (replacement != null) {
670 replacement.augment();
671 for (N parent = replacement.parent; parent != null; parent = parent.parent) {
672 if (!parent.augment()) {
673 break;
674 }
675 }
676 }
677
678 // Clear any previously existing links, so that we're more likely to encounter an exception if we attempt to
679 // access the removed node
680 parent = null;
681 left = null;
682 right = null;
683 isRed = true;
684 }
685
686 /**
687 * Removes this node from the tree that contains it. The effect of this method on the fields of this node is
688 * unspecified. This method assumes that this is not a leaf node.
689 *
690 * If the node has two children, we begin by moving the node's successor to its former position, by changing the
691 * successor's "left", "right", "parent", and isRed fields.
692 *
693 * @return The root of the resulting tree.
694 */
695 public N remove() {
696 if (isLeaf()) {
697 throw new IllegalArgumentException("Attempted to remove a leaf node");
698 }
699
700 // Find an arbitrary non-leaf node in the tree other than this node
701 N node;
702 if (parent != null) {
703 node = parent;
704 } else if (!left.isLeaf()) {
705 node = left;
706 } else if (!right.isLeaf()) {
707 node = right;
708 } else {
709 return left;
710 }
711
712 removeWithoutGettingRoot();
713 return node.root();
714 }
715
716 /**
717 * Returns the root of a perfectly height-balanced subtree containing the next "size" (non-leaf) nodes from
718 * "iterator", in iteration order. This method is responsible for setting the "left", "right", "parent", and isRed
719 * fields of the nodes, and calling augment() as appropriate. It ignores the initial values of the "left", "right",
720 * "parent", and isRed fields.
721 * @param iterator The nodes.
722 * @param size The number of nodes.
723 * @param height The "height" of the subtree's root node above the deepest leaf in the tree that contains it. Since
724 * insertion fixup is slow if there are too many red nodes and deleteion fixup is slow if there are too few red
725 * nodes, we compromise and have red nodes at every fourth level. We color a node red iff its "height" is equal
726 * to 1 mod 4.
727 * @param leaf The leaf node.
728 * @return The root of the subtree.
729 */
730 private static <N extends RedBlackNode<N>> N createTree(
731 Iterator<? extends N> iterator, int size, int height, N leaf) {
732 if (size == 0) {
733 return leaf;
734 } else {
735 N left = createTree(iterator, (size - 1) / 2, height - 1, leaf);
736 N node = iterator.next();
737 N right = createTree(iterator, size / 2, height - 1, leaf);
738
739 node.isRed = height % 4 == 1;
740 node.left = left;
741 node.right = right;
742 if (!left.isLeaf()) {
743 left.parent = node;
744 }
745 if (!right.isLeaf()) {
746 right.parent = node;
747 }
748
749 node.augment();
750 return node;
751 }
752 }
753
754 /**
755 * Returns the root of a perfectly height-balanced tree containing the specified nodes, in iteration order. This
756 * method is responsible for setting the "left", "right", "parent", and isRed fields of the nodes (excluding
757 * "leaf"), and calling augment() as appropriate. It ignores the initial values of the "left", "right", "parent",
758 * and isRed fields.
759 * @param nodes The nodes.
760 * @param leaf The leaf node.
761 * @return The root of the tree.
762 */
763 public static <N extends RedBlackNode<N>> N createTree(Collection<? extends N> nodes, N leaf) {
764 int size = nodes.size();
765 if (size == 0) {
766 return leaf;
767 }
768
769 int height = 0;
770 for (int subtreeSize = size; subtreeSize > 0; subtreeSize /= 2) {
771 height++;
772 }
773
774 N node = createTree(nodes.iterator(), size, height, leaf);
775 node.parent = null;
776 node.isRed = false;
777 return node;
778 }
779
780 /**
781 * Concatenates to the end of the tree rooted at this node. To be precise, given that all of the nodes in this
782 * precede the node "pivot", which precedes all of the nodes in "last", this returns the root of a tree containing
783 * all of these nodes. This method destroys the trees rooted at "this" and "last". We treat "pivot" as a solitary
784 * node that does not belong to any tree, and we ignore its initial "parent", "left", "right", and isRed fields.
785 * This method assumes that this node and "last" are the roots of their respective trees.
786 *
787 * This method takes O(log N) time. It is more efficient than inserting "pivot" and then calling concatenate(last).
788 * It is considerably more efficient than inserting "pivot" and all of the nodes in "last".
789 */
790 public N concatenate(N last, N pivot) {
791 // If the black height of "first", where first = this, is less than or equal to that of "last", starting at the
792 // root of "last", we keep going left until we reach a black node whose black height is equal to that of
793 // "first". Then, we make "pivot" the parent of that node and of "first", coloring it red, and perform
794 // insertion fixup on the pivot. If the black height of "first" is greater than that of "last", we do the
795 // mirror image of the above.
796
797 if (parent != null) {
798 throw new IllegalArgumentException("This is not the root of a tree");
799 }
800 if (last.parent != null) {
801 throw new IllegalArgumentException("\"last\" is not the root of a tree");
802 }
803
804 // Compute the black height of the trees
805 int firstBlackHeight = 0;
806 @SuppressWarnings("unchecked")
807 N first = (N)this;
808 for (N node = first; node != null; node = node.right) {
809 if (!node.isRed) {
810 firstBlackHeight++;
811 }
812 }
813 int lastBlackHeight = 0;
814 for (N node = last; node != null; node = node.right) {
815 if (!node.isRed) {
816 lastBlackHeight++;
817 }
818 }
819
820 // Identify the children and parent of pivot
821 N firstChild = first;
822 N lastChild = last;
823 N parent;
824 if (firstBlackHeight <= lastBlackHeight) {
825 parent = null;
826 int blackHeight = lastBlackHeight;
827 while (blackHeight > firstBlackHeight) {
828 if (!lastChild.isRed) {
829 blackHeight--;
830 }
831 parent = lastChild;
832 lastChild = lastChild.left;
833 }
834 if (lastChild.isRed) {
835 parent = lastChild;
836 lastChild = lastChild.left;
837 }
838 } else {
839 parent = null;
840 int blackHeight = firstBlackHeight;
841 while (blackHeight > lastBlackHeight) {
842 if (!firstChild.isRed) {
843 blackHeight--;
844 }
845 parent = firstChild;
846 firstChild = firstChild.right;
847 }
848 if (firstChild.isRed) {
849 parent = firstChild;
850 firstChild = firstChild.right;
851 }
852 }
853
854 // Add "pivot" to the tree
855 pivot.isRed = true;
856 pivot.parent = parent;
857 if (parent != null) {
858 if (firstBlackHeight < lastBlackHeight) {
859 parent.left = pivot;
860 } else {
861 parent.right = pivot;
862 }
863 }
864 pivot.left = firstChild;
865 if (!firstChild.isLeaf()) {
866 firstChild.parent = pivot;
867 }
868 pivot.right = lastChild;
869 if (!lastChild.isLeaf()) {
870 lastChild.parent = pivot;
871 }
872
873 // Perform insertion fixup
874 return pivot.fixInsertion();
875 }
876
877 /**
878 * Concatenates the tree rooted at "last" to the end of the tree rooted at this node. To be precise, given that all
879 * of the nodes in this precede all of the nodes in "last", this returns the root of a tree containing all of these
880 * nodes. This method destroys the trees rooted at "this" and "last". It assumes that this node and "last" are the
881 * roots of their respective trees. This method takes O(log N) time. It is considerably more efficient than
882 * inserting all of the nodes in "last".
883 */
884 public N concatenate(N last) {
885 if (parent != null || last.parent != null) {
886 throw new IllegalArgumentException("The node is not the root of a tree");
887 }
888 if (isLeaf()) {
889 return last;
890 } else if (last.isLeaf()) {
891 @SuppressWarnings("unchecked")
892 N nThis = (N)this;
893 return nThis;
894 } else {
895 N node = last.min();
896 last = node.remove();
897 return concatenate(last, node);
898 }
899 }
900
901 /**
902 * Splits the tree rooted at this node into two trees, so that the first element of the return value is the root of
903 * a tree consisting of the nodes that were before the specified node, and the second element of the return value is
904 * the root of a tree consisting of the nodes that were equal to or after the specified node. This method is
905 * destructive, meaning it does not preserve the original tree. It assumes that this node is the root and is in the
906 * same tree as splitNode. It takes O(log N) time. It is considerably more efficient than removing all of the
907 * nodes at or after splitNode and then creating a new tree from those nodes.
908 * @param The node at which to split the tree.
909 * @return An array consisting of the resulting trees.
910 */
911 public N[] split(N splitNode) {
912 // To split the tree, we accumulate a pre-split tree and a post-split tree. We walk down the tree toward the
913 // position where we are splitting. Whenever we go left, we concatenate the right subtree with the post-split
914 // tree, and whenever we go right, we concatenate the pre-split tree with the left subtree. We use the
915 // concatenation algorithm described in concatenate(Object, Object). For the pivot, we use the last node where
916 // we went left in the case of a left move, and the last node where we went right in the case of a right move.
917 //
918 // The method uses the following variables:
919 //
920 // node: The current node in our walk down the tree.
921 // first: A node on the right spine of the pre-split tree. At the beginning of each iteration, it is the black
922 // node with the same black height as "node". If the pre-split tree is empty, this is null instead.
923 // firstParent: The parent of "first". If the pre-split tree is empty, this is null. Otherwise, this is the
924 // same as first.parent, unless first.isLeaf().
925 // firstPivot: The node where we last went right, i.e. the next node to use as a pivot when concatenating with
926 // the pre-split tree.
927 // advanceFirst: Whether to set "first" to be its next black descendant at the end of the loop.
928 // last, lastParent, lastPivot, advanceLast: Analogous to "first", firstParent, firstPivot, and advanceFirst,
929 // but for the post-split tree.
930 if (parent != null) {
931 throw new IllegalArgumentException("This is not the root of a tree");
932 }
933 if (isLeaf() || splitNode.isLeaf()) {
934 throw new IllegalArgumentException("The root or the split node is a leaf");
935 }
936
937 // Create an array containing the path from the root to splitNode
938 int depth = 1;
939 N parent;
940 for (parent = splitNode; parent.parent != null; parent = parent.parent) {
941 depth++;
942 }
943 if (parent != this) {
944 throw new IllegalArgumentException("The split node does not belong to this tree");
945 }
946 RedBlackNode<?>[] path = new RedBlackNode<?>[depth];
947 for (parent = splitNode; parent != null; parent = parent.parent) {
948 depth--;
949 path[depth] = parent;
950 }
951
952 @SuppressWarnings("unchecked")
953 N node = (N)this;
954 N first = null;
955 N firstParent = null;
956 N last = null;
957 N lastParent = null;
958 N firstPivot = null;
959 N lastPivot = null;
960 while (!node.isLeaf()) {
961 boolean advanceFirst = !node.isRed && firstPivot != null;
962 boolean advanceLast = !node.isRed && lastPivot != null;
963 if ((depth + 1 < path.length && path[depth + 1] == node.left) || depth + 1 == path.length) {
964 // Left move
965 if (lastPivot == null) {
966 // The post-split tree is empty
967 last = node.right;
968 last.parent = null;
969 if (last.isRed) {
970 last.isRed = false;
971 lastParent = last;
972 last = last.left;
973 }
974 } else {
975 // Concatenate node.right and the post-split tree
976 if (node.right.isRed) {
977 node.right.isRed = false;
978 } else if (!node.isRed) {
979 lastParent = last;
980 last = last.left;
981 if (last.isRed) {
982 lastParent = last;
983 last = last.left;
984 }
985 advanceLast = false;
986 }
987 lastPivot.isRed = true;
988 lastPivot.parent = lastParent;
989 if (lastParent != null) {
990 lastParent.left = lastPivot;
991 }
992 lastPivot.left = node.right;
993 if (!lastPivot.left.isLeaf()) {
994 lastPivot.left.parent = lastPivot;
995 }
996 lastPivot.right = last;
997 if (!last.isLeaf()) {
998 last.parent = lastPivot;
999 }
1000 last = lastPivot.left;
1001 lastParent = lastPivot;
1002 lastPivot.fixInsertionWithoutGettingRoot(false);
1003 }
1004 lastPivot = node;
1005 node = node.left;
1006 } else {
1007 // Right move
1008 if (firstPivot == null) {
1009 // The pre-split tree is empty
1010 first = node.left;
1011 first.parent = null;
1012 if (first.isRed) {
1013 first.isRed = false;
1014 firstParent = first;
1015 first = first.right;
1016 }
1017 } else {
1018 // Concatenate the post-split tree and node.left
1019 if (node.left.isRed) {
1020 node.left.isRed = false;
1021 } else if (!node.isRed) {
1022 firstParent = first;
1023 first = first.right;
1024 if (first.isRed) {
1025 firstParent = first;
1026 first = first.right;
1027 }
1028 advanceFirst = false;
1029 }
1030 firstPivot.isRed = true;
1031 firstPivot.parent = firstParent;
1032 if (firstParent != null) {
1033 firstParent.right = firstPivot;
1034 }
1035 firstPivot.right = node.left;
1036 if (!firstPivot.right.isLeaf()) {
1037 firstPivot.right.parent = firstPivot;
1038 }
1039 firstPivot.left = first;
1040 if (!first.isLeaf()) {
1041 first.parent = firstPivot;
1042 }
1043 first = firstPivot.right;
1044 firstParent = firstPivot;
1045 firstPivot.fixInsertionWithoutGettingRoot(false);
1046 }
1047 firstPivot = node;
1048 node = node.right;
1049 }
1050
1051 depth++;
1052
1053 // Update "first" and "last" to be the nodes at the proper black height
1054 if (advanceFirst) {
1055 firstParent = first;
1056 first = first.right;
1057 if (first.isRed) {
1058 firstParent = first;
1059 first = first.right;
1060 }
1061 }
1062 if (advanceLast) {
1063 lastParent = last;
1064 last = last.left;
1065 if (last.isRed) {
1066 lastParent = last;
1067 last = last.left;
1068 }
1069 }
1070 }
1071
1072 // Add firstPivot to the pre-split tree
1073 N leaf = node;
1074 if (first == null) {
1075 first = leaf;
1076 } else {
1077 firstPivot.isRed = true;
1078 firstPivot.parent = firstParent;
1079 if (firstParent != null) {
1080 firstParent.right = firstPivot;
1081 }
1082 firstPivot.left = leaf;
1083 firstPivot.right = leaf;
1084 firstPivot.fixInsertionWithoutGettingRoot(false);
1085 for (first = firstPivot; first.parent != null; first = first.parent) {
1086 first.augment();
1087 }
1088 first.augment();
1089 }
1090
1091 // Add lastPivot to the post-split tree
1092 lastPivot.isRed = true;
1093 lastPivot.parent = lastParent;
1094 if (lastParent != null) {
1095 lastParent.left = lastPivot;
1096 }
1097 lastPivot.left = leaf;
1098 lastPivot.right = leaf;
1099 lastPivot.fixInsertionWithoutGettingRoot(false);
1100 for (last = lastPivot; last.parent != null; last = last.parent) {
1101 last.augment();
1102 }
1103 last.augment();
1104
1105 @SuppressWarnings("unchecked")
1106 N[] result = (N[])Array.newInstance(getClass(), 2);
1107 result[0] = first;
1108 result[1] = last;
1109 return result;
1110 }
1111
1112 /**
1113 * Returns the lowest common ancestor of this node and "other" - the node that is an ancestor of both and is not the
1114 * parent of a node that is an ancestor of both. Assumes that this is in the same tree as "other". Assumes that
1115 * neither "this" nor "other" is a leaf node. This method may return "this" or "other".
1116 *
1117 * Note that while it is possible to compute the lowest common ancestor in O(P) time, where P is the length of the
1118 * path from this node to "other", the "lca" method is not guaranteed to take O(P) time. If your application
1119 * requires this, then you should write your own lowest common ancestor method.
1120 */
1121 public N lca(N other) {
1122 if (isLeaf() || other.isLeaf()) {
1123 throw new IllegalArgumentException("One of the nodes is a leaf node");
1124 }
1125
1126 // Compute the depth of each node
1127 int depth = 0;
1128 for (N parent = this.parent; parent != null; parent = parent.parent) {
1129 depth++;
1130 }
1131 int otherDepth = 0;
1132 for (N parent = other.parent; parent != null; parent = parent.parent) {
1133 otherDepth++;
1134 }
1135
1136 // Go up to nodes of the same depth
1137 @SuppressWarnings("unchecked")
1138 N parent = (N)this;
1139 N otherParent = other;
1140 if (depth <= otherDepth) {
1141 for (int i = otherDepth; i > depth; i--) {
1142 otherParent = otherParent.parent;
1143 }
1144 } else {
1145 for (int i = depth; i > otherDepth; i--) {
1146 parent = parent.parent;
1147 }
1148 }
1149
1150 // Find the LCA
1151 while (parent != otherParent) {
1152 parent = parent.parent;
1153 otherParent = otherParent.parent;
1154 }
1155 if (parent != null) {
1156 return parent;
1157 } else {
1158 throw new IllegalArgumentException("The nodes do not belong to the same tree");
1159 }
1160 }
1161
1162 /**
1163 * Returns an integer comparing the position of this node in the tree that contains it with that of "other". Returns
1164 * a negative number if this is earlier, a positive number if this is later, and 0 if this is at the same position.
1165 * Assumes that this is in the same tree as "other". Assumes that neither "this" nor "other" is a leaf node.
1166 *
1167 * The base class's implementation takes O(log N) time. If a RedBlackNode subclass stores a value used to order the
1168 * nodes, then it could override compareTo to compare the nodes' values, which would take O(1) time.
1169 *
1170 * Note that while it is possible to compare the positions of two nodes in O(P) time, where P is the length of the
1171 * path from this node to "other", the default implementation of compareTo is not guaranteed to take O(P) time. If
1172 * your application requires this, then you should write your own comparison method.
1173 */
1174 @Override
1175 public int compareTo(N other) {
1176 if (isLeaf() || other.isLeaf()) {
1177 throw new IllegalArgumentException("One of the nodes is a leaf node");
1178 }
1179
1180 // The algorithm operates as follows: compare the depth of this node to that of "other". If the depth of
1181 // "other" is greater, keep moving up from "other" until we find the ancestor at the same depth. Then, keep
1182 // moving up from "this" and from that node until we reach the lowest common ancestor. The node that arrived
1183 // from the left child of the common ancestor is earlier. The algorithm is analogous if the depth of "other" is
1184 // not greater.
1185 if (this == other) {
1186 return 0;
1187 }
1188
1189 // Compute the depth of each node
1190 int depth = 0;
1191 RedBlackNode<N> parent;
1192 for (parent = this; parent.parent != null; parent = parent.parent) {
1193 depth++;
1194 }
1195 int otherDepth = 0;
1196 N otherParent;
1197 for (otherParent = other; otherParent.parent != null; otherParent = otherParent.parent) {
1198 otherDepth++;
1199 }
1200
1201 // Go up to nodes of the same depth
1202 if (depth < otherDepth) {
1203 otherParent = other;
1204 for (int i = otherDepth - 1; i > depth; i--) {
1205 otherParent = otherParent.parent;
1206 }
1207 if (otherParent.parent != this) {
1208 otherParent = otherParent.parent;
1209 } else if (left == otherParent) {
1210 return 1;
1211 } else {
1212 return -1;
1213 }
1214 parent = this;
1215 } else if (depth > otherDepth) {
1216 parent = this;
1217 for (int i = depth - 1; i > otherDepth; i--) {
1218 parent = parent.parent;
1219 }
1220 if (parent.parent != other) {
1221 parent = parent.parent;
1222 } else if (other.left == parent) {
1223 return -1;
1224 } else {
1225 return 1;
1226 }
1227 otherParent = other;
1228 } else {
1229 parent = this;
1230 otherParent = other;
1231 }
1232
1233 // Keep going up until we reach the lowest common ancestor
1234 while (parent.parent != otherParent.parent) {
1235 parent = parent.parent;
1236 otherParent = otherParent.parent;
1237 }
1238 if (parent.parent == null) {
1239 throw new IllegalArgumentException("The nodes do not belong to the same tree");
1240 }
1241 if (parent.parent.left == parent) {
1242 return -1;
1243 } else {
1244 return 1;
1245 }
1246 }
1247
1248 /** Throws a RuntimeException if the RedBlackNode fields of this are not correct for a leaf node. */
1249 private void assertIsValidLeaf() {
1250 if (left != null || right != null || parent != null || isRed) {
1251 throw new RuntimeException("A leaf node's \"left\", \"right\", \"parent\", or isRed field is incorrect");
1252 }
1253 }
1254
1255 /**
1256 * Throws a RuntimeException if the subtree rooted at this node does not satisfy the red-black properties, excluding
1257 * the requirement that the root be black, or it contains a repeated node other than a leaf node.
1258 * @param blackHeight The required number of black nodes in each path from this to a leaf node, including this and
1259 * the leaf node.
1260 * @param visited The nodes we have reached thus far, other than leaf nodes. This method adds the non-leaf nodes in
1261 * the subtree rooted at this node to "visited".
1262 */
1263 private void assertSubtreeIsValidRedBlack(int blackHeight, Set<Reference<N>> visited) {
1264 @SuppressWarnings("unchecked")
1265 N nThis = (N)this;
1266 if (left == null || right == null) {
1267 assertIsValidLeaf();
1268 if (blackHeight != 1) {
1269 throw new RuntimeException("Not all root-to-leaf paths have the same number of black nodes");
1270 }
1271 return;
1272 } else if (!visited.add(new Reference<N>(nThis))) {
1273 throw new RuntimeException("The tree contains a repeated non-leaf node");
1274 } else {
1275 int childBlackHeight;
1276 if (isRed) {
1277 if ((!left.isLeaf() && left.isRed) || (!right.isLeaf() && right.isRed)) {
1278 throw new RuntimeException("A red node has a red child");
1279 }
1280 childBlackHeight = blackHeight;
1281 } else if (blackHeight == 0) {
1282 throw new RuntimeException("Not all root-to-leaf paths have the same number of black nodes");
1283 } else {
1284 childBlackHeight = blackHeight - 1;
1285 }
1286
1287 if (!left.isLeaf() && left.parent != this) {
1288 throw new RuntimeException("left.parent != this");
1289 }
1290 if (!right.isLeaf() && right.parent != this) {
1291 throw new RuntimeException("right.parent != this");
1292 }
1293 RedBlackNode<N> leftNode = left;
1294 RedBlackNode<N> rightNode = right;
1295 leftNode.assertSubtreeIsValidRedBlack(childBlackHeight, visited);
1296 rightNode.assertSubtreeIsValidRedBlack(childBlackHeight, visited);
1297 }
1298 }
1299
1300 /** Calls assertNodeIsValid() on every node in the subtree rooted at this node. */
1301 private void assertNodesAreValid() {
1302 assertNodeIsValid();
1303 if (left != null) {
1304 RedBlackNode<N> leftNode = left;
1305 RedBlackNode<N> rightNode = right;
1306 leftNode.assertNodesAreValid();
1307 rightNode.assertNodesAreValid();
1308 }
1309 }
1310
1311 /**
1312 * Throws a RuntimeException if the subtree rooted at this node is not a valid red-black tree, e.g. if a red node
1313 * has a red child or it contains a non-leaf node "node" for which node.left.parent != node. (If parent != null,
1314 * it's okay if isRed is true.) This method is useful for debugging. See also assertSubtreeIsValid().
1315 */
1316 public void assertSubtreeIsValidRedBlack() {
1317 if (isLeaf()) {
1318 assertIsValidLeaf();
1319 } else {
1320 if (parent == null && isRed) {
1321 throw new RuntimeException("The root is red");
1322 }
1323
1324 // Compute the black height of the tree
1325 Set<Reference<N>> nodes = new HashSet<Reference<N>>();
1326 int blackHeight = 0;
1327 @SuppressWarnings("unchecked")
1328 N node = (N)this;
1329 while (node != null) {
1330 if (!nodes.add(new Reference<N>(node))) {
1331 throw new RuntimeException("The tree contains a repeated non-leaf node");
1332 }
1333 if (!node.isRed) {
1334 blackHeight++;
1335 }
1336 node = node.left;
1337 }
1338
1339 assertSubtreeIsValidRedBlack(blackHeight, new HashSet<Reference<N>>());
1340 }
1341 }
1342
1343 /**
1344 * Throws a RuntimeException if we detect a problem with the subtree rooted at this node, such as a red child of a
1345 * red node or a non-leaf descendant "node" for which node.left.parent != node. This method is useful for
1346 * debugging. RedBlackNode subclasses may want to override assertSubtreeIsValid() to call assertOrderIsValid.
1347 */
1348 public void assertSubtreeIsValid() {
1349 assertSubtreeIsValidRedBlack();
1350 assertNodesAreValid();
1351 }
1352
1353 /**
1354 * Throws a RuntimeException if the nodes in the subtree rooted at this node are not in the specified order or they
1355 * do not lie in the specified range. Assumes that the subtree rooted at this node is a valid binary tree, i.e. it
1356 * has no repeated nodes other than leaf nodes.
1357 * @param comparator A comparator indicating how the nodes should be ordered.
1358 * @param start The lower limit for nodes in the subtree, if any.
1359 * @param end The upper limit for nodes in the subtree, if any.
1360 */
1361 private void assertOrderIsValid(Comparator<? super N> comparator, N start, N end) {
1362 if (!isLeaf()) {
1363 @SuppressWarnings("unchecked")
1364 N nThis = (N)this;
1365 if (start != null && comparator.compare(nThis, start) < 0) {
1366 throw new RuntimeException("The nodes are not ordered correctly");
1367 }
1368 if (end != null && comparator.compare(nThis, end) > 0) {
1369 throw new RuntimeException("The nodes are not ordered correctly");
1370 }
1371 RedBlackNode<N> leftNode = left;
1372 RedBlackNode<N> rightNode = right;
1373 leftNode.assertOrderIsValid(comparator, start, nThis);
1374 rightNode.assertOrderIsValid(comparator, nThis, end);
1375 }
1376 }
1377
1378 /**
1379 * Throws a RuntimeException if the nodes in the subtree rooted at this node are not in the specified order.
1380 * Assumes that this is a valid binary tree, i.e. there are no repeated nodes other than leaf nodes. This method is
1381 * useful for debugging. RedBlackNode subclasses may want to override assertSubtreeIsValid() to call
1382 * assertOrderIsValid.
1383 * @param comparator A comparator indicating how the nodes should be ordered. If this is null, we use the nodes'
1384 * natural order, as in N.compareTo.
1385 */
1386 public void assertOrderIsValid(Comparator<? super N> comparator) {
1387 if (comparator == null) {
1388 comparator = naturalOrder();
1389 }
1390 assertOrderIsValid(comparator, null, null);
1391 }
1392}
diff --git a/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/Reference.java b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/Reference.java
new file mode 100644
index 00000000..a25c167d
--- /dev/null
+++ b/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/interval/Reference.java
@@ -0,0 +1,51 @@
1/*
2 * The MIT License (MIT)
3 *
4 * Copyright (c) 2016 btrekkie
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24package hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval;
25
26/**
27 * Wraps a value using reference equality. In other words, two references are equal only if their values are the same
28 * object instance, as in ==.
29 * @param <T> The type of value.
30 */
31class Reference<T> {
32 /** The value this wraps. */
33 private final T value;
34
35 public Reference(T value) {
36 this.value = value;
37 }
38
39 public boolean equals(Object obj) {
40 if (!(obj instanceof Reference)) {
41 return false;
42 }
43 Reference<?> reference = (Reference<?>)obj;
44 return value == reference.value;
45 }
46
47 @Override
48 public int hashCode() {
49 return System.identityHashCode(value);
50 }
51}
diff --git a/Tests/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.tests/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/tests/interval/SumTest.xtend b/Tests/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.tests/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/tests/interval/SumTest.xtend
new file mode 100644
index 00000000..cbd7e71f
--- /dev/null
+++ b/Tests/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.tests/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/tests/interval/SumTest.xtend
@@ -0,0 +1,140 @@
1package hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.tests.interval
2
3import com.google.common.collect.HashMultiset
4import hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval.Interval
5import hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval.IntervalAggregationMode
6import hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval.IntervalAggregationOperator
7import hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval.IntervalRedBlackNode
8import java.math.BigDecimal
9import java.util.Random
10import org.junit.Assert
11import org.junit.Before
12import org.junit.Test
13
14import static hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.interval.Interval.*
15
16class SumTest {
17 val aggregator = new IntervalAggregationOperator(IntervalAggregationMode.SUM)
18 var IntervalRedBlackNode value = null
19
20 @Before
21 def void reset() {
22 value = aggregator.createNeutral
23 }
24
25 @Test
26 def void emptyTest() {
27 assertEquals(null)
28 }
29
30 @Test
31 def void addSingleTest() {
32 add(between(-1, 1))
33 assertEquals(between(-1, 1))
34 }
35
36 @Test
37 def void addRemoveTest() {
38 add(between(-1, 1))
39 remove(between(-1, 1))
40 assertEquals(null)
41 }
42
43 @Test
44 def void addTwoTest() {
45 add(between(-1, 1))
46 add(above(2))
47 assertEquals(above(1))
48 }
49
50 @Test
51 def void addTwoRemoveFirstTest() {
52 add(between(-1, 1))
53 add(above(2))
54 remove(between(-1, 1))
55 assertEquals(above(2))
56 }
57
58 @Test
59 def void addTwoRemoveSecondTest() {
60 add(between(-1, 1))
61 add(above(2))
62 remove(above(2))
63 assertEquals(between(-1, 1))
64 }
65
66 @Test
67 def void addMultiplicityTest() {
68 add(between(-1, 1))
69 add(between(-1, 1))
70 add(between(-1, 1))
71 assertEquals(between(-3, 3))
72 }
73
74 @Test
75 def void removeAllMultiplicityTest() {
76 add(between(-1, 1))
77 add(between(-1, 1))
78 add(between(-1, 1))
79 remove(between(-1, 1))
80 remove(between(-1, 1))
81 remove(between(-1, 1))
82 assertEquals(null)
83 }
84
85 @Test
86 def void removeSomeMultiplicityTest() {
87 add(between(-1, 1))
88 add(between(-1, 1))
89 add(between(-1, 1))
90 remove(between(-1, 1))
91 remove(between(-1, 1))
92 assertEquals(between(-1, 1))
93 }
94
95 @Test
96 def void largeTest() {
97 val starts = #[null, new BigDecimal(-3), new BigDecimal(-2), new BigDecimal(-1)]
98 val ends = #[new BigDecimal(1), new BigDecimal(2), new BigDecimal(3), null]
99 val current = HashMultiset.create
100 val random = new Random(1)
101 for (var int i = 0; i < 1000; i++) {
102 val start = starts.get(random.nextInt(starts.size))
103 val end = ends.get(random.nextInt(ends.size))
104 val interval = Interval.of(start, end)
105 val isInsert = !current.contains(interval) || random.nextInt(3) == 0
106 if (isInsert) {
107 current.add(interval)
108 } else {
109 current.remove(interval)
110 }
111 val expected = current.stream.reduce(aggregator.mode).orElse(null)
112 update(interval, isInsert)
113 assertEquals(expected)
114 }
115 }
116
117 private def update(Interval interval, boolean isInsert) {
118 value = aggregator.update(value, interval, isInsert)
119 val nodes = newArrayList
120 var node = value.min
121 while (node !== null) {
122 nodes += node
123 node = node.successor
124 }
125 value.assertSubtreeIsValid
126 }
127
128 private def add(Interval interval) {
129 update(interval, true)
130 }
131
132 private def remove(Interval interval) {
133 update(interval, false)
134 }
135
136 private def assertEquals(Interval interval) {
137 val actual = aggregator.getAggregate(value)
138 Assert.assertEquals(interval, actual)
139 }
140}