#define _POSIX_C_SOURCE 200809L #include #include #include #include #include #include #include "sway/tree/arrange.h" #include "sway/tree/container.h" #include "sway/output.h" #include "sway/tree/workspace.h" #include "sway/tree/view.h" #include "list.h" #include "log.h" static void apply_horiz_layout(list_t *children, struct wlr_box *parent) { if (!children->length) { return; } // Count the number of new windows we are resizing, and how much space // is currently occupied int new_children = 0; double current_width_fraction = 0; for (int i = 0; i < children->length; ++i) { struct sway_container *child = children->items[i]; current_width_fraction += child->width_fraction; if (child->width_fraction <= 0) { new_children += 1; } } // Calculate each height fraction double total_width_fraction = 0; for (int i = 0; i < children->length; ++i) { struct sway_container *child = children->items[i]; if (child->width_fraction <= 0) { if (current_width_fraction <= 0) { child->width_fraction = 1.0; } else if (children->length > new_children) { child->width_fraction = current_width_fraction / (children->length - new_children); } else { child->width_fraction = current_width_fraction; } } total_width_fraction += child->width_fraction; } // Normalize width fractions so the sum is 1.0 for (int i = 0; i < children->length; ++i) { struct sway_container *child = children->items[i]; child->width_fraction /= total_width_fraction; } // Calculate gap size double inner_gap = 0; struct sway_container *child = children->items[0]; struct sway_workspace *ws = child->pending.workspace; if (ws) { inner_gap = ws->gaps_inner; } // Descendants of tabbed/stacked containers don't have gaps struct sway_container *temp = child; while (temp) { enum sway_container_layout layout = container_parent_layout(temp); if (layout == L_TABBED || layout == L_STACKED) { inner_gap = 0; } temp = temp->pending.parent; } double total_gap = fmin(inner_gap * (children->length - 1), fmax(0, parent->width - MIN_SANE_W * children->length)); double child_total_width = parent->width - total_gap; inner_gap = floor(total_gap / (children->length - 1)); // Resize windows sway_log(SWAY_DEBUG, "Arranging %p horizontally", parent); double child_x = parent->x; for (int i = 0; i < children->length; ++i) { struct sway_container *child = children->items[i]; child->child_total_width = child_total_width; child->pending.x = child_x; child->pending.y = parent->y; child->pending.width = round(child->width_fraction * child_total_width); child->pending.height = parent->height; child_x += child->pending.width + inner_gap; // Make last child use remaining width of parent if (i == children->length - 1) { child->pending.width = parent->x + parent->width - child->pending.x; } } } static void apply_vert_layout(list_t *children, struct wlr_box *parent) { if (!children->length) { return; } // Count the number of new windows we are resizing, and how much space // is currently occupied int new_children = 0; double current_height_fraction = 0; for (int i = 0; i < children->length; ++i) { struct sway_container *child = children->items[i]; current_height_fraction += child->height_fraction; if (child->height_fraction <= 0) { new_children += 1; } } // Calculate each height fraction double total_height_fraction = 0; for (int i = 0; i < children->length; ++i) { struct sway_container *child = children->items[i]; if (child->height_fraction <= 0) { if (current_height_fraction <= 0) { child->height_fraction = 1.0; } else if (children->length > new_children) { child->height_fraction = current_height_fraction / (children->length - new_children); } else { child->height_fraction = current_height_fraction; } } total_height_fraction += child->height_fraction; } // Normalize height fractions so the sum is 1.0 for (int i = 0; i < children->length; ++i) { struct sway_container *child = children->items[i]; child->height_fraction /= total_height_fraction; } // Calculate gap size double inner_gap = 0; struct sway_container *child = children->items[0]; struct sway_workspace *ws = child->pending.workspace; if (ws) { inner_gap = ws->gaps_inner; } // Descendants of tabbed/stacked containers don't have gaps struct sway_container *temp = child; while (temp) { enum sway_container_layout layout = container_parent_layout(temp); if (layout == L_TABBED || layout == L_STACKED) { inner_gap = 0; } temp = temp->pending.parent; } double total_gap = fmin(inner_gap * (children->length - 1), fmax(0, parent->height - MIN_SANE_H * children->length)); double child_total_height = parent->height - total_gap; inner_gap = floor(total_gap / (children->length - 1)); // Resize windows sway_log(SWAY_DEBUG, "Arranging %p vertically", parent); double child_y = parent->y; for (int i = 0; i < children->length; ++i) { struct sway_container *child = children->items[i]; child->child_total_height = child_total_height; child->pending.x = parent->x; child->pending.y = child_y; child->pending.width = parent->width; child->pending.height = round(child->height_fraction * child_total_height); child_y += child->pending.height + inner_gap; // Make last child use remaining height of parent if (i == children->length - 1) { child->pending.height = parent->y + parent->height - child->pending.y; } } } static void apply_tabbed_layout(list_t *children, struct wlr_box *parent) { if (!children->length) { return; } for (int i = 0; i < children->length; ++i) { struct sway_container *child = children->items[i]; int parent_offset = child->view ? 0 : container_titlebar_height(); child->pending.x = parent->x; child->pending.y = parent->y + parent_offset; child->pending.width = parent->width; child->pending.height = parent->height - parent_offset; } } static void apply_stacked_layout(list_t *children, struct wlr_box *parent) { if (!children->length) { return; } for (int i = 0; i < children->length; ++i) { struct sway_container *child = children->items[i]; int parent_offset = child->view ? 0 : container_titlebar_height() * children->length; child->pending.x = parent->x; child->pending.y = parent->y + parent_offset; child->pending.width = parent->width; child->pending.height = parent->height - parent_offset; } } static void arrange_floating(list_t *floating) { for (int i = 0; i < floating->length; ++i) { struct sway_container *floater = floating->items[i]; arrange_container(floater); } } static void arrange_children(list_t *children, enum sway_container_layout layout, struct wlr_box *parent) { // Calculate x, y, width and height of children switch (layout) { case L_HORIZ: apply_horiz_layout(children, parent); break; case L_VERT: apply_vert_layout(children, parent); break; case L_TABBED: apply_tabbed_layout(children, parent); break; case L_STACKED: apply_stacked_layout(children, parent); break; case L_NONE: apply_horiz_layout(children, parent); break; } // Recurse into child containers for (int i = 0; i < children->length; ++i) { struct sway_container *child = children->items[i]; arrange_container(child); } } void arrange_container(struct sway_container *container) { if (config->reloading) { return; } if (container->view) { view_autoconfigure(container->view); node_set_dirty(&container->node); return; } struct wlr_box box; container_get_box(container, &box); arrange_children(container->pending.children, container->pending.layout, &box); node_set_dirty(&container->node); } void arrange_workspace(struct sway_workspace *workspace) { if (config->reloading) { return; } if (!workspace->output) { // Happens when there are no outputs connected return; } struct sway_output *output = workspace->output; struct wlr_box *area = &output->usable_area; sway_log(SWAY_DEBUG, "Usable area for ws: %dx%d@%d,%d", area->width, area->height, area->x, area->y); bool first_arrange = workspace->width == 0 && workspace->height == 0; double prev_x = workspace->x - workspace->current_gaps.left; double prev_y = workspace->y - workspace->current_gaps.top; workspace->width = area->width; workspace->height = area->height; workspace->x = output->lx + area->x; workspace->y = output->ly + area->y; // Adjust any floating containers double diff_x = workspace->x - prev_x; double diff_y = workspace->y - prev_y; if (!first_arrange && (diff_x != 0 || diff_y != 0)) { for (int i = 0; i < workspace->floating->length; ++i) { struct sway_container *floater = workspace->floating->items[i]; container_floating_translate(floater, diff_x, diff_y); double center_x = floater->pending.x + floater->pending.width / 2; double center_y = floater->pending.y + floater->pending.height / 2; struct wlr_box workspace_box; workspace_get_box(workspace, &workspace_box); if (!wlr_box_contains_point(&workspace_box, center_x, center_y)) { container_floating_move_to_center(floater); } } } workspace_add_gaps(workspace); node_set_dirty(&workspace->node); sway_log(SWAY_DEBUG, "Arranging workspace '%s' at %f, %f", workspace->name, workspace->x, workspace->y); if (workspace->fullscreen) { struct sway_container *fs = workspace->fullscreen; fs->pending.x = output->lx; fs->pending.y = output->ly; fs->pending.width = output->width; fs->pending.height = output->height; arrange_container(fs); } else { struct wlr_box box; workspace_get_box(workspace, &box); arrange_children(workspace->tiling, workspace->layout, &box); arrange_floating(workspace->floating); } } void arrange_output(struct sway_output *output) { if (config->reloading) { return; } const struct wlr_box *output_box = wlr_output_layout_get_box( root->output_layout, output->wlr_output); output->lx = output_box->x; output->ly = output_box->y; output->width = output_box->width; output->height = output_box->height; for (int i = 0; i < output->workspaces->length; ++i) { struct sway_workspace *workspace = output->workspaces->items[i]; arrange_workspace(workspace); } } void arrange_root(void) { if (config->reloading) { return; } const struct wlr_box *layout_box = wlr_output_layout_get_box(root->output_layout, NULL); root->x = layout_box->x; root->y = layout_box->y; root->width = layout_box->width; root->height = layout_box->height; if (root->fullscreen_global) { struct sway_container *fs = root->fullscreen_global; fs->pending.x = root->x; fs->pending.y = root->y; fs->pending.width = root->width; fs->pending.height = root->height; arrange_container(fs); } else { for (int i = 0; i < root->outputs->length; ++i) { struct sway_output *output = root->outputs->items[i]; arrange_output(output); } } } void arrange_node(struct sway_node *node) { switch (node->type) { case N_ROOT: arrange_root(); break; case N_OUTPUT: arrange_output(node->sway_output); break; case N_WORKSPACE: arrange_workspace(node->sway_workspace); break; case N_CONTAINER: arrange_container(node->sway_container); break; } }