aboutsummaryrefslogtreecommitdiffstats
path: root/Solvers/VIATRA-Solver/hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra/src/hu/bme/mit/inf/dslreasoner/viatrasolver/logic2viatra/cardinality/Z3PolyhedronSolver.xtend
blob: 3b831433ce65d3573d106a317a2a460c606aa3fe (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
package hu.bme.mit.inf.dslreasoner.viatrasolver.logic2viatra.cardinality

import com.microsoft.z3.AlgebraicNum
import com.microsoft.z3.ArithExpr
import com.microsoft.z3.Context
import com.microsoft.z3.Expr
import com.microsoft.z3.IntNum
import com.microsoft.z3.Optimize
import com.microsoft.z3.RatNum
import com.microsoft.z3.Status
import com.microsoft.z3.Symbol
import java.math.BigDecimal
import java.math.MathContext
import java.math.RoundingMode
import java.util.Map
import org.eclipse.xtend.lib.annotations.Accessors
import org.eclipse.xtend.lib.annotations.FinalFieldsConstructor

class Z3PolyhedronSolver implements PolyhedronSolver {
	val boolean lpRelaxation
	val double timeoutSeconds

	@FinalFieldsConstructor
	new() {
	}

	new() {
		this(false, -1)
	}

	override createSaturationOperator(Polyhedron polyhedron) {
		new DisposingZ3SaturationOperator(this, polyhedron)
	}

	def createPersistentSaturationOperator(Polyhedron polyhedron) {
		new Z3SaturationOperator(polyhedron, lpRelaxation, timeoutSeconds)
	}
}

@FinalFieldsConstructor
class DisposingZ3SaturationOperator implements PolyhedronSaturationOperator {
	val Z3PolyhedronSolver solver
	@Accessors val Polyhedron polyhedron

	override saturate() {
		val persistentOperator = solver.createPersistentSaturationOperator(polyhedron)
		try {
			persistentOperator.saturate
		} finally {
			persistentOperator.close
		}
	}

	override close() throws Exception {
		// Nothing to close.
	}
}

class Z3SaturationOperator extends AbstractPolyhedronSaturationOperator {
	static val INFINITY_SYMBOL_NAME = "oo"
	static val MULT_SYMBOL_NAME = "*"
	static val TIMEOUT_SYMBOL_NAME = "timeout"
	static val INTEGER_PRECISION = new BigDecimal(Integer.MAX_VALUE).precision
	static val ROUND_DOWN = new MathContext(INTEGER_PRECISION, RoundingMode.FLOOR)
	static val ROUND_UP = new MathContext(INTEGER_PRECISION, RoundingMode.CEILING)
	// The interval isolating the number is smaller than 1/10^precision. 
	static val ALGEBRAIC_NUMBER_ROUNDING = 0

	extension val Context context
	val Symbol infinitySymbol
	val Symbol multSymbol
	val Map<Dimension, ArithExpr> variables
	val int timeoutMilliseconds

	new(Polyhedron polyhedron, boolean lpRelaxation, double timeoutSeconds) {
		super(polyhedron)
		context = new Context
		infinitySymbol = context.mkSymbol(INFINITY_SYMBOL_NAME)
		multSymbol = context.mkSymbol(MULT_SYMBOL_NAME)
		variables = polyhedron.dimensions.toInvertedMap [ dimension |
			val name = dimension.name
			if (lpRelaxation) {
				mkRealConst(name)
			} else {
				mkIntConst(name)
			}
		]
		timeoutMilliseconds = Math.ceil(timeoutSeconds * 1000) as int
	}

	override doSaturate() {
		val status = executeSolver()
		convertStatusToSaturationResult(status)
	}

	private def convertStatusToSaturationResult(Status status) {
		switch (status) {
			case SATISFIABLE:
				PolyhedronSaturationResult.SATURATED
			case UNSATISFIABLE:
				PolyhedronSaturationResult.EMPTY
			case UNKNOWN:
				PolyhedronSaturationResult.UNKNOWN
			default:
				throw new IllegalArgumentException("Unknown Status: " + status)
		}
	}

	private def executeSolver() {
		for (expressionToSaturate : polyhedron.expressionsToSaturate) {
			val expr = expressionToSaturate.toExpr
			val lowerResult = saturateLowerBound(expr, expressionToSaturate)
			if (lowerResult != Status.SATISFIABLE) {
				return lowerResult
			}
			val upperResult = saturateUpperBound(expr, expressionToSaturate)
			if (upperResult != Status.SATISFIABLE) {
				return upperResult
			}
		}
		Status.SATISFIABLE
	}

	private def saturateLowerBound(ArithExpr expr, LinearBoundedExpression expressionToSaturate) {
		val optimize = prepareOptimize
		val handle = optimize.MkMinimize(expr)
		val status = optimize.Check()
		if (status == Status.SATISFIABLE) {
			val value = switch (resultExpr : handle.lower) {
				IntNum:
					resultExpr.getInt()
				RatNum:
					ceil(resultExpr)
				AlgebraicNum:
					ceil(resultExpr.toUpper(ALGEBRAIC_NUMBER_ROUNDING))
				default:
					if (isNegativeInfinity(resultExpr)) {
						null
					} else {
						throw new IllegalArgumentException("Integer result expected, got: " + resultExpr)
					}
			}
			expressionToSaturate.lowerBound = value
		}
		status
	}

	private def floor(RatNum ratNum) {
		val numerator = new BigDecimal(ratNum.numerator.bigInteger)
		val denominator = new BigDecimal(ratNum.denominator.bigInteger)
		numerator.divide(denominator, ROUND_DOWN).setScale(0, RoundingMode.FLOOR).intValue
	}

	private def saturateUpperBound(ArithExpr expr, LinearBoundedExpression expressionToSaturate) {
		val optimize = prepareOptimize
		val handle = optimize.MkMaximize(expr)
		val status = optimize.Check()
		if (status == Status.SATISFIABLE) {
			val value = switch (resultExpr : handle.upper) {
				IntNum:
					resultExpr.getInt()
				RatNum:
					floor(resultExpr)
				AlgebraicNum:
					floor(resultExpr.toLower(ALGEBRAIC_NUMBER_ROUNDING))
				default:
					if (isPositiveInfinity(resultExpr)) {
						null
					} else {
						throw new IllegalArgumentException("Integer result expected, got: " + resultExpr)
					}
			}
			expressionToSaturate.upperBound = value
		}
		status
	}

	private def ceil(RatNum ratNum) {
		val numerator = new BigDecimal(ratNum.numerator.bigInteger)
		val denominator = new BigDecimal(ratNum.denominator.bigInteger)
		numerator.divide(denominator, ROUND_UP).setScale(0, RoundingMode.CEILING).intValue
	}

	private def isPositiveInfinity(Expr expr) {
		expr.app && expr.getFuncDecl.name == infinitySymbol
	}

	private def isNegativeInfinity(Expr expr) {
		// Negative infinity is represented as (* (- 1) oo)
		if (!expr.app || expr.getFuncDecl.name != multSymbol || expr.numArgs != 2) {
			return false
		}
		isPositiveInfinity(expr.args.get(1))
	}

	private def prepareOptimize() {
		val optimize = mkOptimize()
		if (timeoutMilliseconds >= 0) {
			val params = mkParams()
			// We cannot turn TIMEOUT_SYMBOL_NAME into a Symbol in the constructor,
			// because there is no add(Symbol, int) overload.
			params.add(TIMEOUT_SYMBOL_NAME, timeoutMilliseconds)
			optimize.parameters = params
		}
		assertConstraints(optimize)
		optimize
	}

	private def assertConstraints(Optimize it) {
		for (pair : variables.entrySet) {
			assertBounds(pair.value, pair.key)
		}
		for (constraint : nonTrivialConstraints) {
			val expr = createLinearCombination(constraint.coefficients)
			assertBounds(expr, constraint)
		}
	}

	private def assertBounds(Optimize it, ArithExpr expression, LinearBoundedExpression bounds) {
		val lowerBound = bounds.lowerBound
		val upperBound = bounds.upperBound
		if (lowerBound == upperBound) {
			if (lowerBound === null) {
				return
			}
			Assert(mkEq(expression, mkInt(lowerBound)))
		} else {
			if (lowerBound !== null) {
				Assert(mkGe(expression, mkInt(lowerBound)))
			}
			if (upperBound !== null) {
				Assert(mkLe(expression, mkInt(upperBound)))
			}
		}
	}

	private def toExpr(LinearBoundedExpression linearBoundedExpression) {
		switch (linearBoundedExpression) {
			Dimension: variables.get(linearBoundedExpression)
			LinearConstraint: createLinearCombination(linearBoundedExpression.coefficients)
			default: throw new IllegalArgumentException("Unknown linear bounded expression:" + linearBoundedExpression)
		}
	}

	private def createLinearCombination(Map<Dimension, Integer> coefficients) {
		val size = coefficients.size
		if (size == 0) {
			return mkInt(0)
		}
		val array = newArrayOfSize(size)
		var int i = 0
		for (pair : coefficients.entrySet) {
			val variable = variables.get(pair.key)
			if (variable === null) {
				throw new IllegalArgumentException("Unknown dimension: " + pair.key.name)
			}
			val coefficient = pair.value
			val term = if (coefficient == 1) {
					variable
				} else {
					mkMul(mkInt(coefficient), variable)
				}
			array.set(i, term)
			i++
		}
		mkAdd(array)
	}

	override close() throws Exception {
		context.close()
	}
}