/** * Generated from platform:/resource/ca.mcgill.ecse.dslreasoner.standalone.test/queries/ca/mcgill/ecse/dslreasoner/standalone/test/yakindu/queries/yakinduPatterns.vql */ package ca.mcgill.ecse.dslreasoner.standalone.test.yakindu.queries; import ca.mcgill.ecse.dslreasoner.standalone.test.yakindu.Synchronization; import java.util.Arrays; import java.util.Collection; import java.util.LinkedHashSet; import java.util.List; import java.util.Objects; import java.util.Optional; import java.util.Set; import java.util.function.Consumer; import java.util.stream.Collectors; import java.util.stream.Stream; import org.apache.log4j.Logger; import org.eclipse.emf.ecore.EClass; import org.eclipse.viatra.query.runtime.api.IPatternMatch; import org.eclipse.viatra.query.runtime.api.IQuerySpecification; import org.eclipse.viatra.query.runtime.api.ViatraQueryEngine; import org.eclipse.viatra.query.runtime.api.impl.BaseGeneratedEMFPQuery; import org.eclipse.viatra.query.runtime.api.impl.BaseGeneratedEMFQuerySpecification; import org.eclipse.viatra.query.runtime.api.impl.BaseMatcher; import org.eclipse.viatra.query.runtime.api.impl.BasePatternMatch; import org.eclipse.viatra.query.runtime.emf.types.EClassTransitiveInstancesKey; import org.eclipse.viatra.query.runtime.emf.types.EStructuralFeatureInstancesKey; import org.eclipse.viatra.query.runtime.matchers.backend.QueryEvaluationHint; import org.eclipse.viatra.query.runtime.matchers.psystem.PBody; import org.eclipse.viatra.query.runtime.matchers.psystem.PVariable; import org.eclipse.viatra.query.runtime.matchers.psystem.annotations.PAnnotation; import org.eclipse.viatra.query.runtime.matchers.psystem.annotations.ParameterReference; import org.eclipse.viatra.query.runtime.matchers.psystem.basicdeferred.Equality; import org.eclipse.viatra.query.runtime.matchers.psystem.basicdeferred.ExportedParameter; import org.eclipse.viatra.query.runtime.matchers.psystem.basicdeferred.Inequality; import org.eclipse.viatra.query.runtime.matchers.psystem.basicenumerables.TypeConstraint; import org.eclipse.viatra.query.runtime.matchers.psystem.queries.PParameter; import org.eclipse.viatra.query.runtime.matchers.psystem.queries.PParameterDirection; import org.eclipse.viatra.query.runtime.matchers.psystem.queries.PVisibility; import org.eclipse.viatra.query.runtime.matchers.tuple.Tuple; import org.eclipse.viatra.query.runtime.matchers.tuple.Tuples; import org.eclipse.viatra.query.runtime.util.ViatraQueryLoggingUtil; /** * A pattern-specific query specification that can instantiate Matcher in a type-safe way. * *

Original source: *

 *         Simplifying model generation
 *          
 *         {@literal @}Constraint(severity="error", message="error", key = {s})
 *         pattern synchThree(s: Synchronization) {
 *         	Transition.target(t1,s);
 *         	Transition.target(t2,s);
 *         	Transition.target(t3,s);
 *         	t1!=t2;
 *         	t2!=t3;
 *         	t1!=t3;
 *         } or {
 *         	Transition.source(t1,s);
 *         	Transition.source(t2,s);
 *         	Transition.source(t3,s);
 *         	t1!=t2;
 *         	t2!=t3;
 *         	t1!=t3;
 *         }
 * 
* * @see Matcher * @see Match * */ @SuppressWarnings("all") public final class SynchThree extends BaseGeneratedEMFQuerySpecification { /** * Pattern-specific match representation of the ca.mcgill.ecse.dslreasoner.standalone.test.yakindu.queries.synchThree pattern, * to be used in conjunction with {@link Matcher}. * *

Class fields correspond to parameters of the pattern. Fields with value null are considered unassigned. * Each instance is a (possibly partial) substitution of pattern parameters, * usable to represent a match of the pattern in the result of a query, * or to specify the bound (fixed) input parameters when issuing a query. * * @see Matcher * */ public static abstract class Match extends BasePatternMatch { private Synchronization fS; private static List parameterNames = makeImmutableList("s"); private Match(final Synchronization pS) { this.fS = pS; } @Override public Object get(final String parameterName) { if ("s".equals(parameterName)) return this.fS; return null; } public Synchronization getS() { return this.fS; } @Override public boolean set(final String parameterName, final Object newValue) { if (!isMutable()) throw new java.lang.UnsupportedOperationException(); if ("s".equals(parameterName) ) { this.fS = (Synchronization) newValue; return true; } return false; } public void setS(final Synchronization pS) { if (!isMutable()) throw new java.lang.UnsupportedOperationException(); this.fS = pS; } @Override public String patternName() { return "ca.mcgill.ecse.dslreasoner.standalone.test.yakindu.queries.synchThree"; } @Override public List parameterNames() { return SynchThree.Match.parameterNames; } @Override public Object[] toArray() { return new Object[]{fS}; } @Override public SynchThree.Match toImmutable() { return isMutable() ? newMatch(fS) : this; } @Override public String prettyPrint() { StringBuilder result = new StringBuilder(); result.append("\"s\"=" + prettyPrintValue(fS)); return result.toString(); } @Override public int hashCode() { return Objects.hash(fS); } @Override public boolean equals(final Object obj) { if (this == obj) return true; if (obj == null) { return false; } if ((obj instanceof SynchThree.Match)) { SynchThree.Match other = (SynchThree.Match) obj; return Objects.equals(fS, other.fS); } else { // this should be infrequent if (!(obj instanceof IPatternMatch)) { return false; } IPatternMatch otherSig = (IPatternMatch) obj; return Objects.equals(specification(), otherSig.specification()) && Arrays.deepEquals(toArray(), otherSig.toArray()); } } @Override public SynchThree specification() { return SynchThree.instance(); } /** * Returns an empty, mutable match. * Fields of the mutable match can be filled to create a partial match, usable as matcher input. * * @return the empty match. * */ public static SynchThree.Match newEmptyMatch() { return new Mutable(null); } /** * Returns a mutable (partial) match. * Fields of the mutable match can be filled to create a partial match, usable as matcher input. * * @param pS the fixed value of pattern parameter s, or null if not bound. * @return the new, mutable (partial) match object. * */ public static SynchThree.Match newMutableMatch(final Synchronization pS) { return new Mutable(pS); } /** * Returns a new (partial) match. * This can be used e.g. to call the matcher with a partial match. *

The returned match will be immutable. Use {@link #newEmptyMatch()} to obtain a mutable match object. * @param pS the fixed value of pattern parameter s, or null if not bound. * @return the (partial) match object. * */ public static SynchThree.Match newMatch(final Synchronization pS) { return new Immutable(pS); } private static final class Mutable extends SynchThree.Match { Mutable(final Synchronization pS) { super(pS); } @Override public boolean isMutable() { return true; } } private static final class Immutable extends SynchThree.Match { Immutable(final Synchronization pS) { super(pS); } @Override public boolean isMutable() { return false; } } } /** * Generated pattern matcher API of the ca.mcgill.ecse.dslreasoner.standalone.test.yakindu.queries.synchThree pattern, * providing pattern-specific query methods. * *

Use the pattern matcher on a given model via {@link #on(ViatraQueryEngine)}, * e.g. in conjunction with {@link ViatraQueryEngine#on(QueryScope)}. * *

Matches of the pattern will be represented as {@link Match}. * *

Original source: *

   * Simplifying model generation
   *  
   * {@literal @}Constraint(severity="error", message="error", key = {s})
   * pattern synchThree(s: Synchronization) {
   * 	Transition.target(t1,s);
   * 	Transition.target(t2,s);
   * 	Transition.target(t3,s);
   * 	t1!=t2;
   * 	t2!=t3;
   * 	t1!=t3;
   * } or {
   * 	Transition.source(t1,s);
   * 	Transition.source(t2,s);
   * 	Transition.source(t3,s);
   * 	t1!=t2;
   * 	t2!=t3;
   * 	t1!=t3;
   * }
   * 
* * @see Match * @see SynchThree * */ public static class Matcher extends BaseMatcher { /** * Initializes the pattern matcher within an existing VIATRA Query engine. * If the pattern matcher is already constructed in the engine, only a light-weight reference is returned. * * @param engine the existing VIATRA Query engine in which this matcher will be created. * @throws ViatraQueryRuntimeException if an error occurs during pattern matcher creation * */ public static SynchThree.Matcher on(final ViatraQueryEngine engine) { // check if matcher already exists Matcher matcher = engine.getExistingMatcher(querySpecification()); if (matcher == null) { matcher = (Matcher)engine.getMatcher(querySpecification()); } return matcher; } /** * @throws ViatraQueryRuntimeException if an error occurs during pattern matcher creation * @return an initialized matcher * @noreference This method is for internal matcher initialization by the framework, do not call it manually. * */ public static SynchThree.Matcher create() { return new Matcher(); } private final static int POSITION_S = 0; private final static Logger LOGGER = ViatraQueryLoggingUtil.getLogger(SynchThree.Matcher.class); /** * Initializes the pattern matcher within an existing VIATRA Query engine. * If the pattern matcher is already constructed in the engine, only a light-weight reference is returned. * * @param engine the existing VIATRA Query engine in which this matcher will be created. * @throws ViatraQueryRuntimeException if an error occurs during pattern matcher creation * */ private Matcher() { super(querySpecification()); } /** * Returns the set of all matches of the pattern that conform to the given fixed values of some parameters. * @param pS the fixed value of pattern parameter s, or null if not bound. * @return matches represented as a Match object. * */ public Collection getAllMatches(final Synchronization pS) { return rawStreamAllMatches(new Object[]{pS}).collect(Collectors.toSet()); } /** * Returns a stream of all matches of the pattern that conform to the given fixed values of some parameters. *

* NOTE: It is important not to modify the source model while the stream is being processed. * If the match set of the pattern changes during processing, the contents of the stream is undefined. * In such cases, either rely on {@link #getAllMatches()} or collect the results of the stream in end-user code. * @param pS the fixed value of pattern parameter s, or null if not bound. * @return a stream of matches represented as a Match object. * */ public Stream streamAllMatches(final Synchronization pS) { return rawStreamAllMatches(new Object[]{pS}); } /** * Returns an arbitrarily chosen match of the pattern that conforms to the given fixed values of some parameters. * Neither determinism nor randomness of selection is guaranteed. * @param pS the fixed value of pattern parameter s, or null if not bound. * @return a match represented as a Match object, or null if no match is found. * */ public Optional getOneArbitraryMatch(final Synchronization pS) { return rawGetOneArbitraryMatch(new Object[]{pS}); } /** * Indicates whether the given combination of specified pattern parameters constitute a valid pattern match, * under any possible substitution of the unspecified parameters (if any). * @param pS the fixed value of pattern parameter s, or null if not bound. * @return true if the input is a valid (partial) match of the pattern. * */ public boolean hasMatch(final Synchronization pS) { return rawHasMatch(new Object[]{pS}); } /** * Returns the number of all matches of the pattern that conform to the given fixed values of some parameters. * @param pS the fixed value of pattern parameter s, or null if not bound. * @return the number of pattern matches found. * */ public int countMatches(final Synchronization pS) { return rawCountMatches(new Object[]{pS}); } /** * Executes the given processor on an arbitrarily chosen match of the pattern that conforms to the given fixed values of some parameters. * Neither determinism nor randomness of selection is guaranteed. * @param pS the fixed value of pattern parameter s, or null if not bound. * @param processor the action that will process the selected match. * @return true if the pattern has at least one match with the given parameter values, false if the processor was not invoked * */ public boolean forOneArbitraryMatch(final Synchronization pS, final Consumer processor) { return rawForOneArbitraryMatch(new Object[]{pS}, processor); } /** * Returns a new (partial) match. * This can be used e.g. to call the matcher with a partial match. *

The returned match will be immutable. Use {@link #newEmptyMatch()} to obtain a mutable match object. * @param pS the fixed value of pattern parameter s, or null if not bound. * @return the (partial) match object. * */ public SynchThree.Match newMatch(final Synchronization pS) { return SynchThree.Match.newMatch(pS); } /** * Retrieve the set of values that occur in matches for s. * @return the Set of all values or empty set if there are no matches * */ protected Stream rawStreamAllValuesOfs(final Object[] parameters) { return rawStreamAllValues(POSITION_S, parameters).map(Synchronization.class::cast); } /** * Retrieve the set of values that occur in matches for s. * @return the Set of all values or empty set if there are no matches * */ public Set getAllValuesOfs() { return rawStreamAllValuesOfs(emptyArray()).collect(Collectors.toSet()); } /** * Retrieve the set of values that occur in matches for s. * @return the Set of all values or empty set if there are no matches * */ public Stream streamAllValuesOfs() { return rawStreamAllValuesOfs(emptyArray()); } @Override protected SynchThree.Match tupleToMatch(final Tuple t) { try { return SynchThree.Match.newMatch((Synchronization) t.get(POSITION_S)); } catch(ClassCastException e) { LOGGER.error("Element(s) in tuple not properly typed!",e); return null; } } @Override protected SynchThree.Match arrayToMatch(final Object[] match) { try { return SynchThree.Match.newMatch((Synchronization) match[POSITION_S]); } catch(ClassCastException e) { LOGGER.error("Element(s) in array not properly typed!",e); return null; } } @Override protected SynchThree.Match arrayToMatchMutable(final Object[] match) { try { return SynchThree.Match.newMutableMatch((Synchronization) match[POSITION_S]); } catch(ClassCastException e) { LOGGER.error("Element(s) in array not properly typed!",e); return null; } } /** * @return the singleton instance of the query specification of this pattern * @throws ViatraQueryRuntimeException if the pattern definition could not be loaded * */ public static IQuerySpecification querySpecification() { return SynchThree.instance(); } } private SynchThree() { super(GeneratedPQuery.INSTANCE); } /** * @return the singleton instance of the query specification * @throws ViatraQueryRuntimeException if the pattern definition could not be loaded * */ public static SynchThree instance() { try{ return LazyHolder.INSTANCE; } catch (ExceptionInInitializerError err) { throw processInitializerError(err); } } @Override protected SynchThree.Matcher instantiate(final ViatraQueryEngine engine) { return SynchThree.Matcher.on(engine); } @Override public SynchThree.Matcher instantiate() { return SynchThree.Matcher.create(); } @Override public SynchThree.Match newEmptyMatch() { return SynchThree.Match.newEmptyMatch(); } @Override public SynchThree.Match newMatch(final Object... parameters) { return SynchThree.Match.newMatch((ca.mcgill.ecse.dslreasoner.standalone.test.yakindu.Synchronization) parameters[0]); } /** * Inner class allowing the singleton instance of {@link JvmGenericType: ca.mcgill.ecse.dslreasoner.standalone.test.yakindu.queries.SynchThree (visibility: PUBLIC, simpleName: SynchThree, identifier: ca.mcgill.ecse.dslreasoner.standalone.test.yakindu.queries.SynchThree, deprecated: ) (abstract: false, static: false, final: true, packageName: ca.mcgill.ecse.dslreasoner.standalone.test.yakindu.queries) (interface: false, strictFloatingPoint: false, anonymous: false)} to be created * not at the class load time of the outer class, * but rather at the first call to {@link JvmGenericType: ca.mcgill.ecse.dslreasoner.standalone.test.yakindu.queries.SynchThree (visibility: PUBLIC, simpleName: SynchThree, identifier: ca.mcgill.ecse.dslreasoner.standalone.test.yakindu.queries.SynchThree, deprecated: ) (abstract: false, static: false, final: true, packageName: ca.mcgill.ecse.dslreasoner.standalone.test.yakindu.queries) (interface: false, strictFloatingPoint: false, anonymous: false)#instance()}. * *

This workaround is required e.g. to support recursion. * */ private static class LazyHolder { private final static SynchThree INSTANCE = new SynchThree(); /** * Statically initializes the query specification after the field {@link #INSTANCE} is assigned. * This initialization order is required to support indirect recursion. * *

The static initializer is defined using a helper field to work around limitations of the code generator. * */ private final static Object STATIC_INITIALIZER = ensureInitialized(); public static Object ensureInitialized() { INSTANCE.ensureInitializedInternal(); return null; } } private static class GeneratedPQuery extends BaseGeneratedEMFPQuery { private final static SynchThree.GeneratedPQuery INSTANCE = new GeneratedPQuery(); private final PParameter parameter_s = new PParameter("s", "ca.mcgill.ecse.dslreasoner.standalone.test.yakindu.Synchronization", new EClassTransitiveInstancesKey((EClass)getClassifierLiteralSafe("YakinduMetamodel", "Synchronization")), PParameterDirection.INOUT); private final List parameters = Arrays.asList(parameter_s); private GeneratedPQuery() { super(PVisibility.PUBLIC); } @Override public String getFullyQualifiedName() { return "ca.mcgill.ecse.dslreasoner.standalone.test.yakindu.queries.synchThree"; } @Override public List getParameterNames() { return Arrays.asList("s"); } @Override public List getParameters() { return parameters; } @Override public Set doGetContainedBodies() { setEvaluationHints(new QueryEvaluationHint(null, QueryEvaluationHint.BackendRequirement.UNSPECIFIED)); Set bodies = new LinkedHashSet<>(); { PBody body = new PBody(this); PVariable var_s = body.getOrCreateVariableByName("s"); PVariable var_t1 = body.getOrCreateVariableByName("t1"); PVariable var_t2 = body.getOrCreateVariableByName("t2"); PVariable var_t3 = body.getOrCreateVariableByName("t3"); new TypeConstraint(body, Tuples.flatTupleOf(var_s), new EClassTransitiveInstancesKey((EClass)getClassifierLiteral("YakinduMetamodel", "Synchronization"))); body.setSymbolicParameters(Arrays.asList( new ExportedParameter(body, var_s, parameter_s) )); // Transition.target(t1,s) new TypeConstraint(body, Tuples.flatTupleOf(var_t1), new EClassTransitiveInstancesKey((EClass)getClassifierLiteral("YakinduMetamodel", "Transition"))); PVariable var__virtual_0_ = body.getOrCreateVariableByName(".virtual{0}"); new TypeConstraint(body, Tuples.flatTupleOf(var_t1, var__virtual_0_), new EStructuralFeatureInstancesKey(getFeatureLiteral("YakinduMetamodel", "Transition", "target"))); new TypeConstraint(body, Tuples.flatTupleOf(var__virtual_0_), new EClassTransitiveInstancesKey((EClass)getClassifierLiteral("YakinduMetamodel", "Vertex"))); new Equality(body, var__virtual_0_, var_s); // Transition.target(t2,s) new TypeConstraint(body, Tuples.flatTupleOf(var_t2), new EClassTransitiveInstancesKey((EClass)getClassifierLiteral("YakinduMetamodel", "Transition"))); PVariable var__virtual_1_ = body.getOrCreateVariableByName(".virtual{1}"); new TypeConstraint(body, Tuples.flatTupleOf(var_t2, var__virtual_1_), new EStructuralFeatureInstancesKey(getFeatureLiteral("YakinduMetamodel", "Transition", "target"))); new TypeConstraint(body, Tuples.flatTupleOf(var__virtual_1_), new EClassTransitiveInstancesKey((EClass)getClassifierLiteral("YakinduMetamodel", "Vertex"))); new Equality(body, var__virtual_1_, var_s); // Transition.target(t3,s) new TypeConstraint(body, Tuples.flatTupleOf(var_t3), new EClassTransitiveInstancesKey((EClass)getClassifierLiteral("YakinduMetamodel", "Transition"))); PVariable var__virtual_2_ = body.getOrCreateVariableByName(".virtual{2}"); new TypeConstraint(body, Tuples.flatTupleOf(var_t3, var__virtual_2_), new EStructuralFeatureInstancesKey(getFeatureLiteral("YakinduMetamodel", "Transition", "target"))); new TypeConstraint(body, Tuples.flatTupleOf(var__virtual_2_), new EClassTransitiveInstancesKey((EClass)getClassifierLiteral("YakinduMetamodel", "Vertex"))); new Equality(body, var__virtual_2_, var_s); // t1!=t2 new Inequality(body, var_t1, var_t2); // t2!=t3 new Inequality(body, var_t2, var_t3); // t1!=t3 new Inequality(body, var_t1, var_t3); bodies.add(body); } { PBody body = new PBody(this); PVariable var_s = body.getOrCreateVariableByName("s"); PVariable var_t1 = body.getOrCreateVariableByName("t1"); PVariable var_t2 = body.getOrCreateVariableByName("t2"); PVariable var_t3 = body.getOrCreateVariableByName("t3"); new TypeConstraint(body, Tuples.flatTupleOf(var_s), new EClassTransitiveInstancesKey((EClass)getClassifierLiteral("YakinduMetamodel", "Synchronization"))); body.setSymbolicParameters(Arrays.asList( new ExportedParameter(body, var_s, parameter_s) )); // Transition.source(t1,s) new TypeConstraint(body, Tuples.flatTupleOf(var_t1), new EClassTransitiveInstancesKey((EClass)getClassifierLiteral("YakinduMetamodel", "Transition"))); PVariable var__virtual_0_ = body.getOrCreateVariableByName(".virtual{0}"); new TypeConstraint(body, Tuples.flatTupleOf(var_t1, var__virtual_0_), new EStructuralFeatureInstancesKey(getFeatureLiteral("YakinduMetamodel", "Transition", "source"))); new TypeConstraint(body, Tuples.flatTupleOf(var__virtual_0_), new EClassTransitiveInstancesKey((EClass)getClassifierLiteral("YakinduMetamodel", "Vertex"))); new Equality(body, var__virtual_0_, var_s); // Transition.source(t2,s) new TypeConstraint(body, Tuples.flatTupleOf(var_t2), new EClassTransitiveInstancesKey((EClass)getClassifierLiteral("YakinduMetamodel", "Transition"))); PVariable var__virtual_1_ = body.getOrCreateVariableByName(".virtual{1}"); new TypeConstraint(body, Tuples.flatTupleOf(var_t2, var__virtual_1_), new EStructuralFeatureInstancesKey(getFeatureLiteral("YakinduMetamodel", "Transition", "source"))); new TypeConstraint(body, Tuples.flatTupleOf(var__virtual_1_), new EClassTransitiveInstancesKey((EClass)getClassifierLiteral("YakinduMetamodel", "Vertex"))); new Equality(body, var__virtual_1_, var_s); // Transition.source(t3,s) new TypeConstraint(body, Tuples.flatTupleOf(var_t3), new EClassTransitiveInstancesKey((EClass)getClassifierLiteral("YakinduMetamodel", "Transition"))); PVariable var__virtual_2_ = body.getOrCreateVariableByName(".virtual{2}"); new TypeConstraint(body, Tuples.flatTupleOf(var_t3, var__virtual_2_), new EStructuralFeatureInstancesKey(getFeatureLiteral("YakinduMetamodel", "Transition", "source"))); new TypeConstraint(body, Tuples.flatTupleOf(var__virtual_2_), new EClassTransitiveInstancesKey((EClass)getClassifierLiteral("YakinduMetamodel", "Vertex"))); new Equality(body, var__virtual_2_, var_s); // t1!=t2 new Inequality(body, var_t1, var_t2); // t2!=t3 new Inequality(body, var_t2, var_t3); // t1!=t3 new Inequality(body, var_t1, var_t3); bodies.add(body); } { PAnnotation annotation = new PAnnotation("Constraint"); annotation.addAttribute("severity", "error"); annotation.addAttribute("message", "error"); annotation.addAttribute("key", Arrays.asList(new Object[] { new ParameterReference("s") })); addAnnotation(annotation); } return bodies; } } }